C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

news2025/1/6 18:34:29

C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • C刊级 | Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

模型描述

DBO-BiTCN-BiGRU-Attention蜣螂算法是一个用于多变量回归预测的模型,它结合了多个神经网络层和注意力机制来提高预测的准确性。下面是对每个组件的简要解释:

DBO(Double Backtest Optimization)蜣螂算法:这是一种用于优化模型参数的算法,它通过反复进行回测和参数调整来寻找最佳的参数组合,以提高模型在历史数据上的表现。

BiTCN(Bidirectional Temporal Convolutional Network):这是一个双向时间卷积网络,用于从时间序列数据中提取特征。时间卷积层可以捕捉时间序列数据中的长期依赖关系,并生成具有时序信息的特征表示。

BiGRU(Bidirectional Gated Recurrent Unit):这是一个双向门控循环单元网络,用于学习时间序列数据中的时序模式。GRU是一种循环神经网络,可以有效地处理序列数据,并通过门控机制来控制信息的流动。

Attention(注意力机制):这是一种机制,用于在模型中对不同的输入元素分配不同的权重。注意力机制可以帮助模型集中关注对预测有更大贡献的输入元素,从而提高模型的准确性。

综合而言,DBO-BiTCN-BiGRU-Attention蜣螂算法将双向时间卷积、双向门控循环单元和注意力机制结合在一起,以实现对多变量时间序列数据的回归预测。通过优化参数和提取关键特征,该模型可以提高预测准确性,并在实际应用中具有潜力。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
%%  清空环境变量
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
warning off             % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end

disp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')

%%  初始化DBO参数
popsize = 20;                            %  初始种群规模
maxgen = 10;                             %  最大进化代数
fobj = @(x)objectiveFunction(x,f_,vp_train,vt_train,vp_test,T_test,ps_output);

%%  优化算法参数设置
lb = [0.0001 10 20  0.00001];           %  参数的下限。分别是学习率,BiGRU的神经元个数,滤波器个数, 正则化参数
ub = [0.01 100 120 0.005];               %  参数的上限
dim = length(lb);%数量

[Best_score,Best_pos,DBO_curve]=DBO(popsize,maxgen,lb,ub,dim,fobj);
setdemorandstream(pi);

%%  将优化目标参数传进来的值 转换为需要的超参数
learning_rate = Best_pos(1);                   %  学习率
NumNeurons = round(Best_pos(2));               %  BiGRU神经元个数
numFilters = round(Best_pos(3));               %  滤波器个数
L2Regularization = Best_pos(4);                %  正则化参数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   


lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : pop

    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );  
    fit( i ) = fobj( x( i, : ) ) ;                       
end

pFit = fit;                       
pX = x; 
 XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin

 % Start updating the solutions.
for t = 1 : M    

        [fmax,B]=max(fit);
        worse= x(B,:);   
       r2=rand(1);


  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    for i = 1 : pNum    
        if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    x( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else

           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            x(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   

       x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

        end

        x(  i , : ) = Bounds( x(i , : ), lb, ub );    
        fit(  i  ) = fobj( x(i , : ) );
    end 
 [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness value
  bestXX = x( bestII, : );             % bestXX denotes the current optimum position 

 R=1-t/M;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds( Xnew1, lb, ub );
   Xnew2 = Bounds( Xnew2, lb, ub );

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1559361.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(React组件基础)前端八股文Day6

一 类组件与函数组件有什么异同 在React中&#xff0c;类组件和函数组件是创建组件的两种主要方式。随着React的发展&#xff0c;尤其是自Hooks在React 16.8中引入以来&#xff0c;函数组件的功能变得更加强大&#xff0c;使得它们能够更加方便地与类组件相竞争。下面是类组件…

雷卯有1.8V的ESD供您选择

一&#xff0e;雷卯有1.8V的ESD供您选择&#xff0c;如下是型号&#xff0c;体积小。 二. 为什么要用低压1.8V 做静电保护呢 省电&#xff0c;省电&#xff01; 1.8V的电压&#xff0c;内阻也小的话&#xff0c;那就是非常省电的电路。现在很多产品号称10年不用换电池。电池技…

基于Springboot旅游网站管理系统设计和实现

基于Springboot旅游网站管理系统设计和实现 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获取源码联系…

内网渗透-(黄金票据和白银票据)详解(一)

目录 一、Kerberos协议 二、下面我们来具体分析Kerberos认证流程的每个步骤&#xff1a; 1、KRB_AS-REQ请求包分析 PA-ENC-TIMESTAMP PA_PAC_REQUEST 2、 KRB_AS_REP回复包分析&#xff1a; TGT认购权证 Logon Session Key ticket 3、然后继续来讲相关的TGS的认证过程…

在react项目用echarts绘制中国地图

文章目录 一、引入echarts二、下载地图json数据三、编写react组件四、组件使用 一、引入echarts 安装&#xff1a;npm i echarts --save 二、下载地图json数据 由于echarts内部不再支持地图数据&#xff0c;所以要绘制地图需要自己去下载数据。建议使用阿里云的。 地址&…

mysql 用户管理-权限管理

学习了用户管理&#xff0c;再学习下权限管理。 3&#xff0c;权限管理 权限管理主要是对登录到MySQL的用户进行权限验证。所有用户的权限都存储在MySQL的权限表中&#xff0c;不合理的权限规划会给MySQL服务器带来安全隐患。数据库管理员要对所有用户的权限进行合理规…

14 - grace数据处理 - 泄露误差改正 - 空域滤波法(Mascon法)

@[TOC](grace数据处理 - 泄露误差改正 - 空域滤波法(Mascon法)) 空域法的基本思想是假设地面某区域的质量变化是由一系列位置已知、质量未知的质量块(小范围区域)引起的,那么将GRACE反演的结果归算到n个质量块上的过程就是泄露信号恢复的过程。个人理解是这样的:假定已知研…

EfficientNetV2:谷歌又来了,最小的模型,最高的准确率,最快的训练速度 | ICML 2021

论文基于training-aware NAS和模型缩放得到EfficientNetV2系列&#xff0c;性能远优于目前的模型。另外&#xff0c;为了进一步提升训练速度&#xff0c;论文提出progressive learning训练方法&#xff0c;在训练过程中同时增加输入图片尺寸和正则化强度。从实验结果来看&#…

西南交大swjtu算法实验3.3|穷举法

1.实验目的 通过具体例子学习排列这种典型的穷举算法的求解过程以及程序框架&#xff0c;分析其算法的求解过程&#xff0c;以及如何设计穷举法解决实际问题。通过本实验&#xff0c;理解穷举法的特点以及实际应用中的局限性。 2.实验任务 有n (n>1&#xff09;个任务需要…

Java- maven下载jar包,提示找不到,Could not find artifact

1、执行下面命令行 mvn install:install-file -Dfile/home/quangang/桌面/isv-sdk-2.0.jar -DgroupIdcom.jd -DartifactIdisv-sdk -Dversion2.0 -Dpackangjar 2、然后这里要加上jar包

初识C++ · 入门(2)

目录 1 引用 1.1引用的概念 1.2 引用的特性 2 传值&#xff0c;传引用的效率 3 引用和指针的区别 4 内联函数 4.1 内联函数的定义 4. 2 内联函数的特性 5 关键字auto 5.1关于命名的思考 5.2 关于auto的发展 5.3 auto使用规则 6 范围for的使用 7 空指针 1 引用 …

leetcode刷题---链表

目录 1.删除链表的倒数第N个节点两两交换链表中的节点反转链表2 1.删除链表的倒数第N个节点 根据题目描述&#xff0c;第一个思路是存到数组中对数组进行操作&#xff0c;想到数组我们就可以想到下标和倒数第N个的关系&#xff0c;所以我们可以不额外开空间&#xff0c;可以直接…

阿里云2核4G5M云服务器ECS u1实例性能测评

阿里云服务器ECS u1实例&#xff0c;2核4G&#xff0c;5M固定带宽&#xff0c;80G ESSD Entry盘优惠价格199元一年&#xff0c;性能很不错&#xff0c;CPU采用Intel Xeon Platinum可扩展处理器&#xff0c;购买限制条件为企业客户专享&#xff0c;实名认证信息是企业用户即可&a…

Python问题列表

文章目录 1、使用pip安装的模块都存放到哪里了&#xff1f;2、安装fitz包报错&#xff0c;如何解决&#xff1f;3、python代码运行时&#xff0c;控制台输出乱码如何解决。4、vscode中第三方库不自动补齐 1、使用pip安装的模块都存放到哪里了&#xff1f; 答&#xff1a; pip是…

数据库安全(redis、couchdb、h2database)CVE复现

redis服务默认端口&#xff1a;6379&#xff1b;我们可以通过端口扫描来判断是否存在该服务。 Redis 是一套开源的使用ANSI C 编写、支持网络、可基于内存亦可持久化的日志型、键值存储数据库&#xff0c;并提供多种语言的API。 Redis 如果在没有开启认证的情况下&#xff0c;…

基于STM32的武警哨位联动报警系统设计,支持以太网和WIFI通信

1.功能 本文提出的武警报警信息系统终端&#xff0c;可实现报警和联动响应&#xff0c;支持以太网和WIFI两种通信模式&#xff0c;可实现移动哨位报警和固定哨位报警&#xff0c;语音和显示报警信息用户可自行定制。 本终端主要由STM32F103处理器模块和C8051F340处理器模块构…

Linux中断管理:(一)中断号的映射

文章说明&#xff1a; Linux内核版本&#xff1a;5.0 架构&#xff1a;ARM64 参考资料及图片来源&#xff1a;《奔跑吧Linux内核》 Linux 5.0内核源码注释仓库地址&#xff1a; zhangzihengya/LinuxSourceCode_v5.0_study (github.com) 1. 中断控制器 Linux 内核支持众多…

K8S之Configmap的介绍和使用

Configmap Configmap概述Configmap的简介Configmap能解决的问题Configmap应用场景局限性 Configmap创建方法通过命令行直接创建通过文件创建指定目录创建编写Configmap资源清单Yaml文件 Configmap的使用案例通过环境变量引入&#xff1a;使用configMapKeyRef通过环境变量引入&a…

QSpice-(2) 添加外部库和波形操作

Hi,uu们,是不是发现QSpice的库元器件比较少,和其他仿真工具相比少的不是一星半点,所以我们可以用外部下载的库文件去补齐这个缺陷,不知道去哪里下载库?可以看看eeworld的这个网址,里面我放了一些库下载的路径,以及LTspice仿真教程. EEworld LtSpice的库文件下载地址: http:/…

记录阿里云服务器VNC登录一直显示Login Incorrect的问题

想要尝试通过VNC实例登录&#xff0c;结果一直提示Login Incorrect 怀疑自己忘记密码后&#xff0c;重置了几次密码还是登录不上去 解决&#xff1a; 发现阿里云把我小键盘的 ""识别为了 “” 号 但是主键盘区域的 键就没有错位 等就是等 加就是加 而小键盘区…