Elasticsearch 开放 inference API 增加了对 Cohere Embeddings 的支持

news2024/12/26 18:27:31

作者:来自 Elastic Serena Chou, Jonathan Buttner, Dave Kyle

我们很高兴地宣布 Elasticsearch 现在支持 Cohere 嵌入! 发布此功能是与 Cohere 团队合作的一次伟大旅程,未来还会有更多合作。 Cohere 是生成式 AI 领域令人兴奋的创新者,我们很自豪能够让开发人员使用 Cohere 令人难以置信。

Elastic 的交付方法:频繁、生产就绪的迭代

在我们深入探讨之前,如果你是 Elastic 的新手(欢迎!),我们始终相信投资我们选择的技术 (Apache Lucene) 并确保贡献可以用作生产级功能,以我们最快的发布模式可以提供。

让我们深入了解一下我们迄今为止所构建的内容以及我们很快将能够提供的内容:

  • 2023 年 8 月,我们讨论了我们对 Lucene 的贡献,以实现最大内积并使 Cohere 嵌入成为 Elastic Stack 的一等公民。
  • 它首先被贡献到 Lucene 中,并在 Elasticsearch 8.11 版本中发布。
  • 在同一版本中,我们还推出了 /_inference API 端点的技术预览,该端点支持 Elasticsearch 中管理的模型的嵌入,但很快在接下来的版本中,我们建立了与 Hugging Face 和 OpenAI 等第三方模型提供商的集成模式。

Cohere 嵌入支持已经向参与我们在 Elastic Cloud 上的 stateless 产品预览的客户提供,并且很快将在即将发布的 Elasticsearch 版本中向所有人提供。

你需要一个 Cohere 帐户,以及一些 Cohere Embed 端点的使用知识。 你可以选择可用的模型,但如果你只是第一次尝试,我们建议你使用模型 embed-english-v3.0,或者如果你正在寻找多语言变体,请尝试 embed-multilingual-v3.0,维度大小为 1024。

在 Kibana 中,即使没有设置 IDE,你也可以访问控制台,以便在 Elasticsearch 中输入这些后续步骤。

PUT _inference/text_embedding/cohere_embeddings 
{
    "service": "cohere",
    "service_settings": {
        "api_key": <api-key>, 
        "model_id": "embed-english-v3.0", 
        "embedding_type": "byte"
    }
}

当你选择在控制台中运行此命令时,你应该会看到相应的 200,用于创建你的命名 Cohere 推理服务。 在此配置中,我们指定 embedding_type 为 byte,这相当于要求 Cohere 返回带符号的 int8 嵌入。 仅当你选择使用 v3 模型时,这才是有效的配置。

你需要在索引中设置映射,以便为存储即将从 Cohere 检索的嵌入做好准备。

Cohere 嵌入的 Elasticsearch 向量数据库

PUT cohere-embeddings
{
  "mappings": {
    "properties": {
      "name_embedding": { 
        "type": "dense_vector", 
        "dims": 1024, 
        "element_type": "byte"
      },
      "name": { 
        "type": "text" 
      }
    }
  }
}

在映射的定义中,你会发现 Elastic 团队对 Lucene 做出的另一个贡献的一个很好的例子,即使用标量量化的能力。

只是为了好玩,我们粘贴了你将在入门体验中看到的命令,该命令摄取简单的图书目录。

POST _bulk?pretty
{ "index" : { "_index" : "books" } }
{"name": "Snow Crash", "author": "Neal Stephenson", "release_date": "1992-06-01", "page_count": 470}
{ "index" : { "_index" : "books" } }
{"name": "Revelation Space", "author": "Alastair Reynolds", "release_date": "2000-03-15", "page_count": 585}
{ "index" : { "_index" : "books" } }
{"name": "1984", "author": "George Orwell", "release_date": "1985-06-01", "page_count": 328}
{ "index" : { "_index" : "books" } }
{"name": "Fahrenheit 451", "author": "Ray Bradbury", "release_date": "1953-10-15", "page_count": 227}
{ "index" : { "_index" : "books" } }
{"name": "Brave New World", "author": "Aldous Huxley", "release_date": "1932-06-01", "page_count": 268}
{ "index" : { "_index" : "books" } }
{"name": "The Handmaid's Tale", "author": "Margaret Atwood", "release_date": "1985-06-01", "page_count": 311}

此时,你的 books 内容已位于 Elasticsearch 索引中,现在你需要启用 Cohere 在文档上生成嵌入!

为了完成此步骤,你将设置一个 ingest pipeline,该管道使用我们的 inference processor 来调用你在第一个 PUT 请求中定义的推理服务。

PUT _ingest/pipeline/cohere_embeddings
{
  "processors": [
    {
      "inference": {
        "model_id": "cohere_embeddings", 
        "input_output": { 
          "input_field": "name",
          "output_field": "name_embedding"
        }
      }
    }
  ]
}

如果你没有摄取像本书目录这样简单的内容,你可能想知道如何处理所选模型的 token 限制。

如果需要,你可以快速修改创建的 ingest pipeline 以对大型文档进行分块,或者在首次摄取之前使用其他转换工具来处理分块。

如果你正在寻找其他工具来帮助确定分块策略,那么搜索实验室中的这些 notebooks 就是你的最佳选择。

有趣的是,在不久的将来,Elasticsearch 开发人员将完全可以选择此步骤。 正如本博客开头所提到的,我们今天向你展示的这种集成为未来的更多变化奠定了坚实的基础。 其中之一将是此步骤的大幅简化,你根本不必担心分块,也不必担心摄取管道的构建和设计。 Elastic 将以出色的默认设置为你处理这些步骤!

你已经设置了目标索引和摄取管道,现在是时候重新索引以强制文档完成该步骤了。

POST _reindex
{
  "source": {
    "index": "books",
    "size": 50 
  },
  "dest": {
    "index": "cohere-embeddings",
    "pipeline": "cohere_embeddings"
  }
}

用于 Cohere 向量嵌入的 Elastic kNN 搜索

现在你已准备好使用 Cohere 嵌入进行第一个向量搜索。

GET cohere-embeddings/_search
{
  "knn": {
    "field": "content_embedding",
    "query_vector_builder": {
      "text_embedding": {
        "model_id": "cohere_embeddings",
        "model_text": "Snow"
      }
    },
    "k": 10,
    "num_candidates": 100
  },
  "_source": [
    "name",
    "author"
  ]
}

就这么简单。

如果你已经对向量搜索有了很好的理解,我们强烈建议你阅读这篇关于将 kNN 作为查询运行的博客 - 这将解锁专家模式!

与 Cohere 的集成以 stateless 方式提供,很快就可以在 Elastic Cloud、笔记本电脑或自我管理环境中的版本化 Elasticsearch 版本中进行尝试。

祝你搜索愉快,再次感谢 Cohere 团队在此项目上的合作!

准备好将 RAG 构建到你的应用程序中了吗? 想要尝试使用向量数据库的不同 LLMs?
在 Github 上查看我们的 LangChain、Cohere 等示例 notebooks,并参加即将开始的 Elasticsearch 工程师培训!

原文:Elasticsearch open inference API adds support for Cohere Embeddings — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1554926.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

打PTA (15分)(JAVA)

目录 题目描述 输入格式&#xff1a; 输出格式&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; 题解 题目描述 传说这是集美大学的学生对话。本题要求你做一个简单的自动问答机&#xff0c;对任何一个问句&#xff0c;只要其中包含 PTA 就回答 Yes!&#xff0c;其…

大模型重塑电商,淘宝、百度、京东讲出新故事

配图来自Canva可画 随着AI技术日渐成熟&#xff0c;大模型在各个领域的应用也越来越深入&#xff0c;国内互联网行业也随之进入了大模型竞赛的后半场&#xff0c;开始从“百模大战”转向了实际应用。大模型从通用到细分垂直领域的跨越&#xff0c;也让更多行业迎来了新的商机。…

Pytorch从零开始实战22

Pytorch从零开始实战——CycleGAN实战 本系列来源于365天深度学习训练营 原作者K同学 内容介绍 CycleGAN是一种无监督图像到图像转换模型&#xff0c;它的一个重要应用领域是域迁移&#xff0c;比如可以把一张普通的风景照变化成梵高化作&#xff0c;或者将游戏画面变化成真…

python可视化:tqdm进度条控制台输出模块

前言 在处理大量数据或执行耗时操作时&#xff0c;了解代码执行的进度是至关重要的。在Python中&#xff0c;通过使用进度条可以有效地实现对代码执行进度的可视化展示。 tqdm 是一个快速、可扩展的Python进度条库&#xff0c;能够实时显示代码执行的进度。并且它提供了简洁的A…

环境温度对测量平板有什么影响

环境温度可以对测量平板有影响。温度变化可以导致平板的尺寸发生变化。根据热膨胀原理&#xff0c;当环境温度升高时&#xff0c;平板的尺寸会扩大&#xff1b;当环境温度降低时&#xff0c;平板的尺寸会缩小。这种尺寸变化可能会导致测量结果的误差。因此&#xff0c;在测量平…

9、jenkins微服务持续集成(一)

文章目录 一、流程说明二、源码概述三、本地部署3.1 SpringCloud微服务部署本地运行微服务本地部署微服务3.2 静态Web前端部署四、Docker快速入门一、流程说明 Jenkins+Docker+SpringCloud持续集成流程说明 大致流程说明: 开发人员每天把代码提交到Gitlab代码仓库Jenkins从G…

TouchGFX之文本区域

文本区域在屏幕上显示文本。 文本区域的文本在大小、颜色、自定义字体、动态文本等方面是完全可以配置的 #ifndef TOUCHGFX_TEXTAREA_HPP #define TOUCHGFX_TEXTAREA_HPP #include <touchgfx/Font.hpp> #include <touchgfx/TextProvider.hpp> #include <touchg…

JavaSE day15 笔记

第十五天课堂笔记 数组 可变长参数★★★ 方法 : 返回值类型 方法名(参数类型 参数名 , 参数类型 … 可变长参数名){}方法体 : 变长参数 相当于一个数组一个数组最多只能有一个可变长参数, 并放到列表的最后parameter : 方法参数 数组相关算法★★ 冒泡排序 由小到大: 从前…

标准库不带操作系统移植FreeModbus到STM32

添加FreeModbus代码 首先准备一个空白的标准库项目。 下载FreeModbus源码。 将源码中的modbus文件夹复制到项目路径下&#xff0c;并把demo->BARE->port文件夹的内容也添加进来。 新建一个文件port.c备用。然后打开项目&#xff0c;将上述文件添加至项目&#xff0c;…

OSPF---开放式最短路径优先协议

1. OSPF描述 OSPF协议是一种链路状态协议。每个路由器负责发现、维护与邻居的关系&#xff0c;并将已知的邻居列表和链路费用LSU报文描述&#xff0c;通过可靠的泛洪与自治系统AS内的其他路由器周期性交互&#xff0c;学习到整个自治系统的网络拓扑结构;并通过自治系统边界的路…

Vscode 常用插件和快捷键 2024版笔记

1. 常用插件2.常用快捷键 1. 常用插件 1.1 Chinese vscode 转成中文&#xff08;更新版后有进要重装&#xff09; 1.2 Live Server 浏览成网页 1.3 Material Icon Theme 文件目录和文件图标样式&#xff08;没有自定义&#xff09; 1.4 vscode 主题 1.5 代码截图 1.6 代码补…

【01-20】计算机网络基础知识(非常详细)从零基础入门到精通,看完这一篇就够了

【01-20】计算机网络基础知识&#xff08;非常详细&#xff09;从零基础入门到精通&#xff0c;看完这一篇就够了 以下是本文参考的资料 欢迎大家查收原版 本版本仅作个人笔记使用1、OSI 的七层模型分别是&#xff1f;各自的功能是什么&#xff1f;2、说一下一次完整的HTTP请求…

新能源充电桩站场AI视频智能分析烟火检测方案及技术特点分析

新能源汽车充电起火的原因多种多样&#xff0c;涉及技术、设备、操作等多个方面。从技术层面来看&#xff0c;新能源汽车的电池管理系统可能存在缺陷&#xff0c;导致电池在充电过程中出现过热、短路等问题&#xff0c;从而引发火灾。在设备方面&#xff0c;充电桩的设计和生产…

Python环境下基于机器学习的空压机故障识别(出口阀泄漏等)

Python环境下基于机器学习&#xff08;多层感知机&#xff0c;决策树&#xff0c;随机森林&#xff0c;高斯过程&#xff0c;AdaBoost&#xff0c;朴素贝叶斯&#xff09;的压缩机故障识别&#xff08;出口阀泄漏&#xff0c;止逆阀泄露&#xff0c;轴承损伤&#xff0c;惯性轮…

京东数据API接口采集/京东商品详情页SKU实时采集

京东电商实时数据采集是指通过自动化工具和技术&#xff0c;定时或不间断地收集京东电商平台的数据。这些数据可以包括商品信息、价格、销量、评价等。通过实时数据采集&#xff0c;可以帮助京东电商平台及其卖家了解市场情况、监控竞争对手、优化产品定价和营销策略等。 企业级…

C语言从入门到精通- CLion安装配置Gitee

CLion安装Gitee 需要先申请Gitee账号。 下载gitee插件 在CLion的plugins中查找gitee,安装后重启CLion。 CLion上关联gitee账号 安装git软件 下载git 访问网站&#xff1a; Git - Downloading Package (git-scm.com) 安装 创建本地用户名和邮箱 在弹出的命令行窗体中输入用户名…

vite+vue3使用模块化批量发布Mockjs接口

在Vue3项目中使用Mock.js可以模拟后端接口数据&#xff0c;方便前端开发和调试。下面是使用vitevue3使用模块化批量发布Mockjs接口的步骤&#xff1a; 1. 安装Mock.js 在Vue3项目的根目录下&#xff0c;使用以下命令安装Mock.js&#xff1a; npm install mockjs --save-dev …

constexpr与std::is_same_v碰撞会产生什么火花?

1. 只编译会用到的if分支 示例代码一中&#xff0c;checkType_v1和checkType_v2两个函数的区别就是if的条件里一个加了constexpr一个没加&#xff0c;加与不加从结果来看都一样&#xff0c;那在编译时和运行时各有什么区别呢&#xff1f; 示例代码一&#xff0c;test_01.cpp&…

canvas画图,拖动已经画好的矩形

提示&#xff1a;canvas画图写文字 文章目录 前言一、写文字总结 前言 一、写文字 test.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-widt…

【物联网】Qinghub opc-ua 连接协议

基础信息 组件名称 &#xff1a; opcua-connector 组件版本&#xff1a; 1.0.0 组件类型&#xff1a; 系统默认 状 态&#xff1a; 正式发布 组件描述&#xff1a;通过OPCUA连接网关&#xff0c;通过定时任务获取OPCUA相关的数据或通过执行指令控制设备相关参数。 配置文件&a…