FPGA结构与片上资源

news2024/11/22 22:38:00

文章目录

  • 0.总览
  • 1.可配置逻辑块CLB
    • 1.1 6输入查找表(LUT6)
    • 1.2 选择器(MUX)
    • 1.3 进位链(Carry Chain)
    • 1.4 触发器(Flip-Flop)
  • 2.可编程I/O单元
    • 2.1 I/O物理级
    • 2.2 I/O逻辑级
  • 3.布线资源
  • 4.其他资源介绍
  • 5.Vivado中资源查看步骤
    • 资源总览
    • 结构名称查看
      • CLB
      • SLICE
      • I/O
      • GTX
      • BRAM
      • DSP48
    • 布线资源查看
    • 真值表查看
    • 时钟区域查看
  • 参考资料

0.总览

可编程逻辑单元CLB(Configurable Logic Block)、可编程I/O单元和布线资源构成了FPGA内部三大主要资源。

本文以Xilinx 7系列FPGA为例进行FPGA结构和片上资源讲解,其采用28nm工艺节点。

1.可配置逻辑块CLB

可配置的逻辑块(CLB)是主要的逻辑资源,用于实现时序和组合逻辑电路

可配置逻辑单元(CLB)在 FPGA 中最为丰富,由两个 SLICE 组成。由于 SLICE 有 SLICEL(L:Logic)和 SLICEM(M:Memory)之分,因此 CLB 可分为 CLBLL 和 CLBLM 两类。

一个CLB包含两个SLICE:2个SLICEL或者1个SLICEL+一个SLICEM。

SLICEL和SLICEM内部都包含4个6输入查找表(Look-Up-Table,LUT6)、3个数据选择器(MUX)、1个进位链(Carry Chain)和8个触发器(Flip-Flop)。
在这里插入图片描述

1.1 6输入查找表(LUT6)

查找表Look-up Table,本质上就是1个6输入,64深度的ROM (SLICEM中的则是RAM,因为可读)。通过将所有结果保存在其内部,使用时通过由输入构建的地址线对其进行查找,从而实现6输入的函数逻辑。需要注意的是SLICEM中的查找表,除了读功能外还具备写功能,这就使得其内部的LUT由一个ROM变成了一个RAM,这也是其实现移位寄存器功能和分布式DRAM功能的原因。

虽然SLICEL和SLICEM的结构组成一样,但两者更细化的结构上略有不同,区别在于LUT6上(如下图所示),从而导致LUT6的功能有所不同(如下表格所示)。
在这里插入图片描述

LUT功能SLICELSLICEM
逻辑函数发生器
ROM
分布式RAM
移位寄存器

逻辑函数发生器:用作逻辑函数发生器时,查找表就扮演着真值表的角色,真值表的内容可在Vivado中查看。

ROM:不论是 SLICEL 还是 SLICEM,他们的 LUT6 都可以作为 ROM 使用,配置为 64x1(占用 1 个 LUT6,64 代表深度,1 代表宽度)、128x1(占用 2 个 LUT6)和 256(占用 4 个 LUT6)的 ROM。

分布式RAM: SLICEM中的查找表可配置为RAM ( Random Access Memory),称为分布式RAM。其中 RAM 的写操作为同步,而读操作是异步的,即与时钟信号无关。如果要实现同步读操作,则要额外占用一个触发器,从而增加了意识时钟的延迟(Latency),但提升了系统的性能。这就解释了为什么我们实现RAM同步读写的时候,读出输出要延迟一个 clk。对于布式存储单元(RAM和ROM),Vivado 提供了相应的IP: Distributed Memory Generator

移位寄存器:SLICEM 中的 LUT 还可以配置为移位寄存器,每个 LUT6 可实现深度为 32 的移位寄存器,(注意:只能左移)。这样,每个LUT可以将串行数据延迟1到32个时钟周期。移位输入D(LUT DI1脚)和移位输出Q31 (LUT MC31脚)可以进行级联,以形成更大的移位寄存器。一个SLICEM的4个LUT6级且同一个 SLICEM 中的 LUT6(4个)可级联实现 128 深度的移位寄存器。移位寄存器的典型应用是延迟补偿和同步FIFO。需要注意的是,这里的移位寄存器均没有复位端,这是因为LUT6本身不支持复位。一旦代码描述中使用了复位,无论是同步复位还是异步复位,都会导致移位寄存器采用触发器级联的方式实现。

1.2 选择器(MUX)

SLICE 中的三个 MUX(Multiplexer)两个F7MUX:F7AMUX,F7BMUX +一个 F8MUX。可以和 LUT6 联合共同实现更大的MUX。

一个 LUT6 可实现 4 选 1 的 MUX。

SLICE 中的 F7MUX(F7AMUX 和 F7BMUX)的输入数据来自于相邻的两个 LUT6 的 O6 端口。每个SLICE中都有2个MUXF7,其输入只能为LUT6的输出,而输出只能接到MUXF8;每个SLICE中都有1个MUXF8,其输入只能为MUXF7的输出。

一个 F7MUX 和相邻的两个 LUT6 可实现一个 8 选 1 的 MUX。因此,一个 SLICE 可实现 2 个 8 选 1 的 MUX。

4 个 LUT6、F7AMUX、F7BMUX 和 F8MUX 可实现一个 16 选 1 的 MUX。因此,一个 SLICE 可实现一个 16 选 1 的 MUX。

1.3 进位链(Carry Chain)

进位链用于实现加法和减法运行。它内部实际还包含 4 个 MUX 和 4 个 2 输入异或门(XOR)。每个CLB Slice都有一个专用的加法器CARRY4, 可以实现两个4bit数的加减法运算。CARRY4是一种超前进位的加法器(或者说减法器),是FPGA内部用来实现加减法运算的基本运算单元,但同时也可以实现一些其他的函数功能。

1.4 触发器(Flip-Flop)

每个 SLICE 中有 8 个触发器

Slice中的存储单元便是我们前面提到的寄存器FF,FF是实现时序逻辑最基本的单元。需要注意的是,这 8 个触发器可分为两大类:4 个只能配置为边沿敏感的 D 触发器(Flip-Flop)和 4 个即可配置为边沿敏感的 D 触发器又可配置为电平敏感的锁存器(Flop & Latch)。但后四个一旦被配置为锁存器后,则前4个触发器也不能使用了,会造成一定的资源浪费。

当后者被用作锁存器的时候,前者将无法使用。

当这8个触发器都用作D触发器时,他们的控制端口包括使能端CE、置位/复位端口S/R和时钟端口CLK是对应共享的,也就是就是说共用的。{CE,S/R,CLK}称为触发器的控制集。显然,在具体的设计中,控制集种类越少越好,这样可以提高触发器的利用率。那么怎样减少控制集种类呢?我的理解是:

  • 减少时钟种类,即频率越少越好;
  • 统一规范的设计逻辑,如复位。

S/R端口可配置为同步/异步置位或同步/异步复位,且高有效,因此可形成4种D触发器,如下表所示。

原语(Primitive)功能描述原语(Primitive)功能描述
FDCE同步使能,异步复位FDRE同步使能,同步复位
FDPE同步使能,异步置位FDSE同步使能,同步置位

在我们的常规设计中,FDCE和FDPE占了绝大多数。

说到高有效,让我想起了一个大家习以为常,但很少深究的问题:为什么一开始接触FPGA的时候,都告诉我们低电平复位?后来查了一些资料,有说从功耗、噪声可靠性方面考虑等等,但是偶然看到Xilinx和Altera两家芯片的触发器不一样!如下图所示,Xilinx的触发器是高电平复位,而Altera的触发器时低电平复位。所以这也是需要考虑的一点吗?
在这里插入图片描述

2.可编程I/O单元

7系列FPGA的输人输出(I/O)进行了优化,用来在物理级和逻辑级上满足不同的要求,这些要求包括:高速存储器、网络、视频平板和传感器接口,高速的ADC/DAC连接,以及传统接口。7系列FPGA使用了Xilinx统一的I/O结构。
物理I/O能力和结构提供了一个I/O标准范围、端接和节省能量模式。每个I/O组的I/O数量、它们相对应的时钟、新的I/O资源的放置,以及I/O在FPGA晶圆上的排列都是同等重要的。此外,详细的I/O绑定逻辑功能,比如输人/输出延迟和串行化/解串行化功能,对于所支持的I/O应用是非常关键的。所添加的最新功能结构,比如移相器,PLL和I/O FIFO完整接口特性,支持最高性能的DDR3.及其他存储器接口。下图给出了基本的I/O结构和与新I/O相关的模块。
在这里插入图片描述

2.1 I/O物理级

在物理级上,I/O要求支持一个范围的驱动电压(或电平)和驱动强度,以及接收功能接口的不同I/O标准。I/O也支持不同的输人/输出端接特性,它可以动态地确认和移除。
7系列的结构有两种类型的I/O:

(1)高性能(High Performance)I/O,在组中称为HP I/O组;
(2)宽范围(High Range,HR)I/O(支持宽范围的I/O标准),在组中称为HR I/O组。

所有的I/O类型都是基于Virtex-6的结构,但是扩展了功能和所支持的电压范围。这两种I/O类型被绑定到一个有50个I/O的整个I/O组。Artix-7 FPGA只有3.3V的HR I/O组,Virtex-7和Kintex FPGA既有HP I/O组,也有HR I/O组。下面详细介绍HP I/O和HP I/O组。下图给出了Kintex-7XC7K160T的I/O组和CMT的布局结构图。
在这里插入图片描述
用于存储器接口的I/O电源主要有3个元件:
(1)DCI:用于匹配PCB布线的阻抗。
(2)参考输人接收器:用于调整I/O电压到核电压。
(3)IDELAY:用于同步信号到时钟。

2.2 I/O逻辑级

所有的I/O都能被配置成组合或者寄存方式。所有的输入/输出支持双数据率(double data rate, DDR)模式。任何一个输人和一些输出可以通过编程IDEALY和ODELAY进行延迟。
每个I/O 块包含一个可编程的绝对延迟原语IDELAY2。IDELAY可以连接到ILOGICE2/ISERDESE2或者ILOGICE3/ISERDESE2模块。
每个HP I/O组包含一个可编程绝对延迟原语称为ODELAY2(HR I/O组不可用)。

很多应用连接了高速、位串行的I/O,以及FPGA内低速并行操作的逻辑。这就要求在I/O结构内有一个串行化器和解串行化器。每个I/O引脚包含8位IOSERDES,能执行串行-并行或并行-串行转换。
7系列内用于精确实现ISERDES的原语是ISERDESE2,精确实现OSERDES的原语是OSERDESE2。

3.布线资源

互联是FPGA内用于连接功能元件,比如IOB、CLB、DSP和BRAM,输人和输出信号通路的可编程网络。互联也称为布线,被分段用于最优的连接。
7系列FPGA CLB在FPGA内以规则的阵列排列。如图所示,每个到开关矩阵的连接用来访问通用的布线资源。
在这里插入图片描述

FPGA内部定义了不同类型的布线,这些布线通过长度来定义。较长的路径元素对于较长的距离来说速度更快。互联类型有快速连接、单连接、双连接和四连接。

  1. 快速连接:快速连接将模块的输出布线回模块的输入。与较大的CLB一起,快速连接为较简单的功能提供了高性能布线。
  2. 单连接:单连接用于在垂直和水平方向上,布线到相邻的单元。
  3. 双连接:双连接在所有4个方向上,水平和垂直连接到所有其他的单元和对角线相邻的单元。
  4. 四连接:四连接在水平和垂直方向,每隔4个CLB连接一个或者对角线连接到两行和两列的距离的单元。与前几代的单通道长线相比,四连接线具有更好的灵活性。
    在这里插入图片描述

4.其他资源介绍

《Xilinx FPGA设计权威指南》2.2 FPGA原理及结构
在这里插入图片描述
《FPGA深度解析》第2章 FPGA结构与片上资源
在这里插入图片描述

5.Vivado中资源查看步骤

资源总览

上方选择Window-Device,打开Device布局图可以看到FPGA的内部结构资源。
在这里插入图片描述

结构名称查看

放大后点击具体结构可在左侧Site Properties中看到具体的结构名称等信息。

CLB

在这里插入图片描述

SLICE

在这里插入图片描述

I/O

在这里插入图片描述

GTX

在这里插入图片描述

BRAM

在这里插入图片描述

DSP48

在这里插入图片描述
等等。

布线资源查看

布线BEL则不实现逻辑功能,而只用来实现布线功能。要看到布线EBL,首先需要把模式改成Routing Resource这个选项勾上:
在这里插入图片描述

放大界面看可以看到布线BEL(Basic Element of Logic):可以看到在原来的SLICE块基础上多了互联线和一些布线选择块
在这里插入图片描述

接下来随便选择一个布线BEL, 把鼠标悬停在它上面就会出现一些基本信息,如果点击选中它则会在左下角出现更详细的信息,比如它的输入/输出管脚分别连接到哪里,它属于哪个时钟区域,它是什么类型的BEL等等。
在这里插入图片描述

Switch Box可以理解成一个“中转站“ ,附近的各种资源的输出都到这里完成转接,所以这个布线BEL的输出可能是来自相邻的FF,也可能是来自相邻的LUT,具体都根据实际的RTL代码来决定。
布线BEL用来实现各种输入的选取,从而实现底层资源间的灵活互联!正是有了这些布线资源和布线BEL, FPGA才可以做到这么灵活。
在这里插入图片描述

真值表查看

综合后LUT真值表的查看。
在这里插入图片描述

时钟区域查看

时钟区域是Xilinx FPGA对时钟的一种划分结构,它把整个芯片根据不同的IO BANK内的所有资源和连线都划定到不同的各个时钟区域下,这样对在同一时钟区域下的时钟信号就方便管理,同时也方便各种时钟资源走线和互联。
在这里插入图片描述

综合后打开Clock Regions可以看到时钟区域和Bank划分。IO BANK和时钟区域不是一一对应的。
在这里插入图片描述

参考资料

CLB部分参考:

《Vivado从此开始》第1章FPGA技术分析

从底层结构开始学习FPGA(0)----FPGA的硬件架构层次(BEL Site Tile FSR SLR Device)

从底层结构开始学习FPGA(1)----可配置逻辑块CLB(Configurable Logic Block)

FPGA基础学习(7) – 内部结构之CLB

LUT部分补充:

从底层结构开始学习FPGA(2)----LUT查找表

其他部分参考:

《FPGA深度解析》第2章 FPGA结构与片上资源

《Xilinx FPGA设计权威指南》2.2 FPGA原理及结构

官方文档:

7 Series FPGAs Configurable Logic Block User Guide (UG474)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1553589.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络七层模型之数据链路层:理解网络通信的架构(二)

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

IEEE投稿Latex要求整理(以TCYB为例)

本文以IEEE Transactions on Cybernetics(TCYB)期刊为例,简略整理了投稿中latex编写时作者本人认为需要特别注意的事项。 投稿步骤如下: 下载对应期刊的模板;仔细阅读模板中的投稿要求;在官网注册并投稿。 一、下载对应期刊的模…

Rust编程(五)终章:查漏补缺

闭包 & 迭代器 闭包(Closure)通常是指词法闭包,是一个持有外部环境变量的函数。外部环境是指闭包定义时所在的词法作用域。外部环境变量,在函数式编程范式中也被称为自由变量,是指并不是在闭包内定义的变量。将自…

“光学行业正被量子颠覆”——行业巨头齐聚,展示量子成果

OFC是全球最大的光网络和通信盛会,代表一系列产品,从光学元件和设备到系统、测试设备、软件和特种光纤,代表整个供应链,并提供业界学习、连接、建立网络和达成交易的首要市场,于2024年3月24日至28日在圣地亚哥会议中心…

HarmonyOS入门--配置环境 + IDE汉化

文章目录 下载安装DevEco Studio配置环境先认识DevEco Studio界面工程目录工程级目录模块级目录 app.json5module.json5main_pages.json通知栏预览区 运行模拟器IED汉化 下载安装DevEco Studio 去官网下载DevEco Studio完了安装 配置环境 打开已安装的DevEco Studio快捷方式…

百源生物诚邀您参观2024上海生物发酵产品与技术装备展

参展企业介绍 百源生物致力于提高微生物工业发酵的过程控制水平,以“发酵过程的智能化”为公司使命,通过反应器设计、营养量化、代谢监控及数据分析等手段让复杂的微生物发酵过程变得透明简单,从而实现发酵过程的精确量化控制。 公司…

4. 面向对象编程(上)

文章目录 4. 面向对象编程(上)4.1 面向过程和面向对象4.2 类和对象4.2.1 类对象得使用4.2.2 类对象的内存解析4.2.3 匿名对象 4.3 类的成员之一:属性4.3.1 成员变量和局部变量 4.4 类的成员之二:方法(函数)…

JAVA面试八股文之集合

JAVA集合相关 集合?说一说Java提供的常见集合?hashmap的key可以为null嘛?hashMap线程是否安全, 如果不安全, 如何解决?HashSet和TreeSet?ArrayList底层是如何实现的?ArrayList listnew ArrayList(10)中的li…

【超图 SuperMap3D】【基础API使用示例】54、超图SuperMap3D -鼠标左键拖拽绘制圆

前言 引擎下载地址:[添加链接描述](http://support.supermap.com.cn/DownloadCenter/DownloadPage.aspx?id2524) 通过左键按下拖拽的方式在地图上进行贴地的圆绘制 完整代码拷贝直接本地运行即可查看效果效果 核心代码 // 绘制圆形 function startDrawCircleHand…

每天学习一点点之注解处理器 APT

APT(Annotation Processing Tool)是一种处理注解的工具,它能够对源代码文件进行检测并找出其中的注解,然后对其进行额外的处理。由于注解处理过程是在编译时完成的,并不会影响程序的运行时性能。 APT 能做什么&#x…

3D人体姿态估计项目 | 从2D视频中通过检测人体关键点来估计3D人体姿态实现

项目应用场景 人体姿态估计是关于图像或视频中人体关节的 2D 或 3D 定位。一般来说,这个过程可以分为两个部分:(1) 2D 视频中的 2D 关键点检测;(2) 根据 2D 关键点进行 3D 位姿估计。这个项目使用 Detectron2 从任意的 2D 视频中检测 2D 关节…

车载以太网AVB交换机 gptp透明时钟 8口 千兆/百兆可切换 SW1100TR

SW1100TR车载以太网交换机 一、产品简要分析 8端口千兆和百兆混合车载以太网交换机,其中包含2个通道的1000BASE-T1采用罗森博格H-MTD接口,5通道100BASE-T1泰科MATEnet接口和1个通道1000BASE-T标准以太网(RJ45接口),可以实现车载以太网多通道…

【LeetCode】LeetCode 547. 省份数量(Java版 什么是并查集)

📝个人主页:哈__ 期待您的关注 一、题目描述 有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。 省份 是一组直…

STM32看似无法唤醒的一种异常现象分析

1. 引言 STM32 G0 系列产品具有丰富的外设和强大的处理性能以及良好的低功耗特性,被广泛用于各类工业产品中,包括一些需要低功耗需求的应用。 2. 问题描述 用户使用 STM32G0B1 作为汽车多媒体音响控制器的控制芯片,用来作为收音机频道存贮…

【有芯职说】数字芯片BES工程师

一、 数字芯片BES工程师简介 今天来聊聊数字芯片BES工程师,其中BES是Back End Support的缩写,就是后端支持的意思。其实这个岗位是数字IC前端设计和数字IC后端设计之间的一座桥,完成从寄存器传输级设计到具体工艺的mapping和实现。这个岗位在…

[flume$1]记录一个启动flume配置的错误

先总结:Flume配置文件后面,不能跟注释 报错代码: [ERROR - org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:158)] Unable to deliver event. Exception follows. org.apache.flume.EventDeliveryException: Failed to open…

如何在 Mac Pro 上恢复丢失的数据?

无论您多么努力,几乎不可能永远不会无意中删除 Mac 上的文件。当您得知删除后清空了垃圾箱时,您的处境可能看起来很黯淡。不要灰心。我们将教您如何使用本机操作系统功能或数据恢复工具恢复丢失的数据。奇客数据恢复Mac版可帮助恢复已从 Mac Pro 计算机上…

《Vision mamba》论文笔记

原文出处: [2401.09417] Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model (arxiv.org) 原文笔记: What: Vision Mamba: Efficient Visual Representation Learning with Bidirectional St…

YOLOv9 实现多目标跟踪

YOLOv9项目结合了YOLOv9的快速目标检测能力和DeepSORT的稳定跟踪能力,实现了对视频流中多个对象的实时、准确检测和跟踪。在具体应用中,该项目能够对视频中的行人、车辆或其他物体进行实时定位、识别和持续跟踪,即使在复杂环境、对象互相遮挡…

SlerfTools:简化操作,激发Solana生态创新潜能

在区块链世界的快速演变中,Solana生态系统以其独特的高性能吸引了全球的目光。然而,随着生态系统的蓬勃发展,用户和开发者面临的挑战也日渐增多。正是在这样的背景下,一个名为SlerfTools的新星项目应运而生,它承诺将为Solana带来一场革命性的变革。 项目的诞生 SlerfTools并非…