设计模式 —— 设计原则

news2024/11/25 0:49:34

在软件开发中,为了提高软件系统的可维护性和可复用性,增加软件的可扩展性和灵活性,程序员要尽量根据6条原则来开发程序,从而提高软件开发效率、节约软件开发成本和维护成本。

开闭原则

对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。

想要达到这样的效果,我们需要使用接口和抽象类。

因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

下面以 搜狗输入法 的皮肤为例介绍开闭原则的应用。

【例】搜狗输入法 的皮肤设计。

分析:搜狗输入法 的皮肤是输入法背景图片、窗口颜色和声音等元素的组合。用户可以根据自己的喜爱更换自己的输入法的皮肤,也可以从网上下载新的皮肤。这些皮肤有共同的特点,可以为其定义一个抽象类(AbstractSkin),而每个具体的皮肤(DefaultSpecificSkin和HeimaSpecificSkin)是其子类。用户窗体可以根据需要选择或者增加新的主题,而不需要修改原代码,所以它是满足开闭原则的。
在这里插入图片描述

里氏代换原则

里氏代换原则:任何基类可以出现的地方,子类一定可以出现。通俗理解:子类可以扩展父类的功能,但不能改变父类原有的功能。换句话说,子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法。

如果通过重写父类的方法来完成新的功能,这样写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。

下面看一个里氏替换原则中经典的一个例子

【例】正方形不是长方形。
在数学领域里,正方形毫无疑问是长方形,它是一个长宽相等的长方形。所以,我们开发的一个与几何图形相关的软件系统,就可以顺理成章的让正方形继承自长方形。

在这里插入图片描述

  • 代码如下:
    长方形类(Rectangle):

    public class Rectangle {
        private double length;
        private double width;
    
        public double getLength() {
            return length;
        }
    
        public void setLength(double length) {
            this.length = length;
        }
    
        public double getWidth() {
            return width;
        }
    
        public void setWidth(double width) {
            this.width = width;
        }
    }
    

    正方形(Square):
    由于正方形的长和宽相同,所以在方法setLength和setWidth中,对长度和宽度都需要赋相同值。

    public class Square extends Rectangle {
        
        public void setWidth(double width) {
            super.setLength(width);
            super.setWidth(width);
        }
    
        public void setLength(double length) {
            super.setLength(length);
            super.setWidth(length);
        }
    }
    

    类RectangleDemo是我们的软件系统中的一个组件,它有一个resize方法依赖基类Rectangle,resize方法是RectandleDemo类中的一个方法,用来实现宽度逐渐增长的效果。

    public class RectangleDemo {
        
        public static void resize(Rectangle rectangle) {
            while (rectangle.getWidth() <= rectangle.getLength()) {
                rectangle.setWidth(rectangle.getWidth() + 1);
            }
        }
    
        //打印长方形的长和宽
        public static void printLengthAndWidth(Rectangle rectangle) {
            System.out.println(rectangle.getLength());
            System.out.println(rectangle.getWidth());
        }
    
        public static void main(String[] args) {
            Rectangle rectangle = new Rectangle();
            rectangle.setLength(20);
            rectangle.setWidth(10);
            resize(rectangle);
            printLengthAndWidth(rectangle);
    
            System.out.println("============");
    
            Rectangle rectangle1 = new Square();
            rectangle1.setLength(10);
            resize(rectangle1);
            printLengthAndWidth(rectangle1);
        }
    }
    

    我们运行一下这段代码就会发现,假如我们把一个普通长方形作为参数传入resize方法,就会看到长方形宽度逐渐增长的效果,当宽度大于长度,代码就会停止,这种行为的结果符合我们的预期;假如我们再把一个正方形作为参数传入resize方法后,就会看到正方形的宽度和长度都在不断增长,代码会一直运行下去,直至系统产生溢出错误。所以,普通的长方形是适合这段代码的,正方形不适合。
    我们得出结论:在resize方法中,Rectangle类型的参数是不能被Square类型的参数所代替,如果进行了替换就得不到预期结果。因此,Square类和Rectangle类之间的继承关系违反了里氏代换原则,它们之间的继承关系不成立,正方形不是长方形。


如何改进呢?此时我们需要重新设计他们之间的关系。抽象出来一个四边形接口(Quadrilateral),让Rectangle类和Square类实现Quadrilateral接口
在这里插入图片描述

依赖倒转原则

高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。简单的说就是要求对抽象进行编程,不要对实现进行编程,这样就降低了客户与实现模块间的耦合。

【例】组装电脑
现要组装一台电脑,需要配件cpu,硬盘,内存条。只有这些配置都有了,计算机才能正常的运行。选择cpu有很多选择,如Intel,AMD等,硬盘可以选择希捷,西数等,内存条可以选择金士顿,海盗船等。

  • 类图如下:
    在这里插入图片描述

  • 代码如下:
    希捷硬盘类(XiJieHardDisk):

    public class XiJieHardDisk implements HardDisk {
    
        public void save(String data) {
            System.out.println("使用希捷硬盘存储数据" + data);
        }
    
        public String get() {
            System.out.println("使用希捷希捷硬盘取数据");
            return "数据";
        }
    }
    

    Intel处理器(IntelCpu):

    public class IntelCpu implements Cpu {
    
        public void run() {
            System.out.println("使用Intel处理器");
        }
    }
    

    金士顿内存条(KingstonMemory):

    public class KingstonMemory implements Memory {
    
        public void save() {
            System.out.println("使用金士顿作为内存条");
        }
    }
    

    电脑(Computer):

    public class Computer {
    
        private XiJieHardDisk hardDisk;
        private IntelCpu cpu;
        private KingstonMemory memory;
    
        public IntelCpu getCpu() {
            return cpu;
        }
    
        public void setCpu(IntelCpu cpu) {
            this.cpu = cpu;
        }
    
        public KingstonMemory getMemory() {
            return memory;
        }
    
        public void setMemory(KingstonMemory memory) {
            this.memory = memory;
        }
    
        public XiJieHardDisk getHardDisk() {
            return hardDisk;
        }
    
        public void setHardDisk(XiJieHardDisk hardDisk) {
            this.hardDisk = hardDisk;
        }
    
        public void run() {
            System.out.println("计算机工作");
            cpu.run();
            memory.save();
            String data = hardDisk.get();
            System.out.println("从硬盘中获取的数据为:" + data);
        }
    }
    

    测试类(TestComputer): 测试类用来组装电脑。

    public class TestComputer {
        public static void main(String[] args) {
            Computer computer = new Computer();
            computer.setHardDisk(new XiJieHardDisk());
            computer.setCpu(new IntelCpu());
            computer.setMemory(new KingstonMemory());
    
            computer.run();
        }
    }
    

    上面代码可以看到已经组装了一台电脑,但是似乎组装的电脑的cpu只能是Intel的,内存条只能是金士顿的,硬盘只能是希捷的,这对用户肯定是不友好的,用户有了机箱肯定是想按照自己的喜好,选择自己喜欢的配件。


根据依赖倒转原则进行改进: 代码我们只需要修改Computer类,让Computer类依赖抽象(各个配件的接口),而不是依赖于各个组件具体的实现类。

  • 类图如下:
    在这里插入图片描述

  • 电脑(Computer):

    public class Computer {
    
        private HardDisk hardDisk;
        private Cpu cpu;
        private Memory memory;
    
        public HardDisk getHardDisk() {
            return hardDisk;
        }
    
        public void setHardDisk(HardDisk hardDisk) {
            this.hardDisk = hardDisk;
        }
    
        public Cpu getCpu() {
            return cpu;
        }
    
        public void setCpu(Cpu cpu) {
            this.cpu = cpu;
        }
    
        public Memory getMemory() {
            return memory;
        }
    
        public void setMemory(Memory memory) {
            this.memory = memory;
        }
    
        public void run() {
            System.out.println("计算机工作");
        }
    }
    

    面向对象的开发很好的解决了这个问题,一般情况下抽象的变化概率很小,让用户程序依赖于抽象,实现的细节也依赖于抽象。即使实现细节不断变动,只要抽象不变,客户程序就不需要变化。这大大降低了客户程序与实现细节的耦合度。

接口隔离原则

客户端不应该被迫依赖于它不使用的方法;一个类对另一个类的依赖应该建立在最小的接口上。

【例】安全门案例
我们需要创建一个Bug品牌的安全门,该安全门具有防火、防水、防盗的功能。可以将防火,防水,防盗功能提取成一个接口,形成一套规范。

  • 类图如下:
    在这里插入图片描述
    上面的设计我们发现了它存在的问题,Bug品牌的安全门具有防盗,防水,防火的功能。现在如果我们还需要再创建一个传智品牌的安全门,而该安全门只具有防盗、防水功能呢?很显然如果实现SafetyDoor接口就违背了接口隔离原则,那么我们如何进行修改呢?

  • 类图在这里插入图片描述

  • 代码如下:
    AntiTheft(接口):

    public interface AntiTheft {
        void antiTheft();
    }
    

    Fireproof(接口):

    public interface Fireproof {
        void fireproof();
    }
    

    Waterproof(接口):

    public interface Waterproof {
        void waterproof();
    }
    

    HeiMaSafetyDoor(类):

    public class HeiMaSafetyDoor implements AntiTheft,Fireproof,Waterproof {
        public void antiTheft() {
            System.out.println("防盗");
        }
    
        public void fireproof() {
            System.out.println("防火");
        }
    
    
        public void waterproof() {
            System.out.println("防水");
        }
    }
    

    ItcastSafetyDoor(类):

    public class ItcastSafetyDoor implements AntiTheft,Fireproof {
        public void antiTheft() {
            System.out.println("防盗");
        }
    
        public void fireproof() {
            System.out.println("防火");
        }
    }
    

迪米特法则

迪米特法则又叫最少知识原则。 只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate
friends and not to strangers)。
其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。
迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。

【例】明星与经纪人的关系实例
明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如和粉丝的见面会,和媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是陌生人,所以适合使用迪米特法则。

  • 类图如下:
    在这里插入图片描述

  • 代码如下:
    明星类(Star)

    public class Star {
        private String name;
    
        public Star(String name) {
            this.name=name;
        }
    
        public String getName() {
            return name;
        }
    }
    

    粉丝类(Fans)

    public class Fans {
        private String name;
    
        public Fans(String name) {
            this.name=name;
        }
    
        public String getName() {
            return name;
        }
    }
    

    媒体公司类(Company)

    public class Company {
        private String name;
    
        public Company(String name) {
            this.name=name;
        }
    
        public String getName() {
            return name;
        }
    }
    

    经纪人类(Agent)

    public class Agent {
        private Star star;
        private Fans fans;
        private Company company;
    
        public void setStar(Star star) {
            this.star = star;
        }
    
        public void setFans(Fans fans) {
            this.fans = fans;
        }
    
        public void setCompany(Company company) {
            this.company = company;
        }
    
        public void meeting() {
            System.out.println(fans.getName() + "与明星" + star.getName() + "见面了。");
        }
    
        public void business() {
            System.out.println(company.getName() + "与明星" + star.getName() + "洽淡业务。");
        }
    }
    

合成复用原则

合成复用原则是指:尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。

通常类的复用分为继承复用和合成复用两种。

  • 继承复用虽然有简单和易实现的优点,但它也存在以下缺点:

    1. 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。
    2. 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
    3. 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。
  • 采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点:

    1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
    2. 对象间的耦合度低。可以在类的成员位置声明抽象。
    3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

【例】汽车分类管理程序
汽车按“动力源”划分可分为汽油汽车、电动汽车等;按“颜色”划分可分为白色汽车、黑色汽车和红色汽车等。如果同时考虑这两种分类,其组合就很多。类图如下:
在这里插入图片描述
从上面类图我们可以看到使用继承复用产生了很多子类,如果现在又有新的动力源或者新的颜色的话,就需要再定义新的类。我们试着将继承复用改为聚合复用看一下。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1553047.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

0 决策树基础

目录 1 绪论 2 模型 3 决策树面试总结 1 绪论 决策树算法包括ID3、C4.5以及C5.0等&#xff0c;这些算法容易理解&#xff0c;适用各种数据&#xff0c;在解决各种问题时都有良好表现&#xff0c;尤其是以树模型为核心的各种集成算法&#xff0c;在各个行业和领域都有广泛的…

蓝桥杯基础练习详细解析(四)——Fibonacci费伯纳西数列(题目分析、代码实现、Python)

试题 基础练习 Fibonacci数列 提交此题 评测记录 资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 Fibonacci数列的递推公式为&#xff1a;FnFn-1Fn-2&#xff0c;其…

RANSAC算法:从原理到图像拼接的实践

RANSAC算法&#xff1a;从原理到图像拼接的实践 1. RANSAC算法原理和步骤 1.1 RANSAC算法简介 RANSAC (RANdom SAmple Consensus, 随机采样一致) 算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。“外点”一般指的的数据中的噪声&#xff0c;比…

阿里云CentOS7安装MySQL8

创建目录 [rootnode1 ~]# mkdir /usr/local/mysql [rootnode1 ~]# cd /usr/local/mysql/ 下载安装包 到MySQL官网查看需要下载的版本&#xff0c;并获取到下载地址 https://downloads.mysql.com/archives/community/下载 [rootnode1 mysql]# wget https://downloads.mysql…

uniapp 微信小程序 canvas 手写板获取书写内容区域并输出

uni.canvasGetImageData 返回一个数组&#xff0c;用来描述 canvas 区域隐含的像素数据&#xff0c;在自定义组件下&#xff0c;第二个参数传入自定义组件实例 this&#xff0c;以操作组件内 组件。 // 获取目标 canvas 的像素信息 pixelData let canvas uni.createSelector…

平台介绍-搭建赛事运营平台(3)

上文介绍了品牌隔离的基本原理&#xff0c;就是通过不同的前端和微服务来实现。但是确实很多功能是类似的&#xff0c;所以从编程角度还是有些管理手段的。 前端部分&#xff1a;前端部分没有什么特别手段&#xff0c;就是两个独立的项目工程&#xff0c;分别维护。相同的部分复…

MoonBit MeetUp回顾——张正、宗喆:编程语言在云原生与区块链领域的技术探索

宗喆和张正分别给我们带了 KCL 相关的最新进展&#xff0c;由蚂蚁集团开发的 Rust 编写的开源 DSL&#xff0c;目标是优化云原生策略配置和用户体验。它通过引入动态配置管理、配置校验和基础设施抽象等核心概念&#xff0c;解决开发者认知负担、配置膨胀和标准化工具缺乏的问题…

Flink系列之:Flink SQL Gateway

Flink系列之&#xff1a;Flink SQL Gateway 一、Flink SQL Gateway二、部署三、启动SQL Gateway四、运行 SQL 查询五、SQL 网关启动选项六、SQL网关配置七、支持的端点 一、Flink SQL Gateway SQL 网关是一项允许多个客户端从远程并发执行 SQL 的服务。它提供了一种简单的方法…

机器学习(三)

神经网络: 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络&#xff0c;它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 f为激活(响应)函数: 理想激活函数是阶跃函数&#xff0c;0表示抑制神经元而1表示激活神经元。 多层前馈网络结构: BP(误差逆…

比较AI编程工具Copilot、Tabnine、Codeium和CodeWhisperer

主流的几个AI智能编程代码助手包括Github Copilot、Codeium、Tabnine、Replit Ghostwriter和Amazon CodeWhisperer。 你可能已经尝试过其中的一些&#xff0c;也可能还在不断寻找最适合自己或公司使用的编程助手。但是&#xff0c;这些产品都会使用精选代码示例来实现自我宣传…

【携程笔试题汇总】2024-03-28-携程春招笔试题-三语言题解(CPP/Python/Java)

&#x1f36d; 大家好这里是KK爱Coding &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新携程近期的春秋招笔试题汇总&#xff5e; &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f…

PYTHON初级笔记1

0、python&#xff1f; 简单的编程语言 python环境搭建&#xff1a; ①、开发环境&#xff1a;vscode、sublime、pycharm...... ②、运行环境&#xff1a;cpython解释器 python如何写代码&#xff1f; ①、在终端上的命令行上写&#xff0c;可以是我们cmd的中终端&#xff0c;…

【C语言】预处理常见知识详解(宏详解)

文章目录 1、预定义符号2、define2.1 define 定义常量2.2 define 定义宏 3、#和##3.1 **#**3.2 **##** 4、条件编译&#xff08;开关&#xff09; 1、预定义符号 在C语言中内置了一些预定义符号&#xff0c;可以直接使用&#xff0c;这些符号实在预处理期间处理的&#xff0c;…

【IntelliJ IDEA】运行测试报错解决方案(附图)

IntelliJ IDEA 版本 2023.3.4 (Ultimate Edition) 测试报错信息 命令行过长。 通过 JAR 清单或通过类路径文件缩短命令行&#xff0c;然后重新运行 解决方案 修改运行配置&#xff0c;里面如果没有缩短命令行&#xff0c;需要再修改选项里面勾选缩短命令行让其显示&#x…

深入浅出的揭秘游标尺模式与迭代器模式的神秘面纱 ✨

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 &#x1f680; 转载自&#xff1a;设计模式深度解析&#xff1a;深入浅出的揭秘游标尺模式与迭代…

【机器学习】深入探讨基于实例的学习及K-最近邻算法

深入探讨基于实例的学习及K-最近邻算法 在机器学习的众多策略中&#xff0c;基于实例的学习方法因其简单性和高效性而备受关注。这种方法的核心理念在于利用已知的数据实例来预测新数据的标签或属性。本文将深入探讨其中的两个重要概念&#xff1a;最近邻算法和K-最近邻算法&a…

ArcGIS Pro横向水平图例

终于知道ArcGIS Pro怎么调横向图例了&#xff01; 简单的像0一样 旋转&#xff0c;左转右转随便转 然后调整图例项间距就可以了&#xff0c;参数太多就随便试&#xff0c;总有一款适合你&#xff01; 要调整长度&#xff0c;就调整图例块的大小。完美&#xff01; 好不容易…

CorelDRAW25.0.0.230最新2024版本Crack下载安装方法

CorelDRAW (CDR)是一款专业的平面设计软件。本软件是由加拿大Corel公司开发的一款功能强大的专业平面设计软件、矢量设计软件、矢量绘图软件。本矢量图形制作工具软件广泛应用于商标设计、标志制作、封面设计、CIS设计、产品包装设计、模型绘制、插画绘制、时装/服装设计、印刷…

STM32G473之flash存储结构汇总

STM32G4系列单片机&#xff0c;为32位的微控制器&#xff0c;理论上其内部寄存器地址最多支持4GB的命名及查找&#xff08;2的32次方&#xff0c;地址命名为0x00000000至0xFFFFFFFF&#xff09;。STM32官方对4GB的地址存储进行编号时&#xff0c;又分割成了8个block区域&#x…

Switch 和 PS1 模拟器:3000+ 游戏随心玩 | 开源日报 No.174

Ryujinx/Ryujinx Stars: 26.1k License: MIT Ryujinx 是用 C# 编写的实验性任天堂 Switch 模拟器。 该项目旨在提供出色的准确性和性能、用户友好的界面以及稳定的构建。它已经通过了大约 4050 个测试&#xff0c;其中超过 4000 个可以启动并进入游戏&#xff0c;其中大约 340…