题目描述:
小明几乎每天早晨都会在一家包子铺吃早餐。
他发现这家包子铺有 N 种蒸笼,其中第 i 种蒸笼恰好能放 Ai 个包子。
每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买 X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X 个包子。
比如一共有 3 种蒸笼,分别能放 3、4和 5 个包子。
当顾客想买 11个包子时,大叔就会选 2 笼 3 个的再加 1 笼 5 个的(也可能选出 1 笼 3 个的再加 2 笼 4 个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。
比如一共有 3 种蒸笼,分别能放 4、5和 6 个包子。
而顾客想买 7 个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入格式:
第一行包含一个整数 N。
接下来 N 行,每行包含一个整数 Ai。
输出格式:
输出一个整数代表答案。
如果凑不出的数目有无限多个,输出INF。
数据范围:
1≤N≤100,
1≤Ai≤100
输入样例1:
2
4
5
输出样例1:
6
输入样例2:
2
4
6
输出样例2:
INF
样例解释
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
前情提要:这道题目有关完全背包,01背包这两道题目,如果没看过这两道题目的题解大家可以去看看,能帮助理解这道题目。链接我也放到这里了,点击链接就行。
分析步骤:
第一:看到题目我们就能明白,每一笼包子是可以选无数多笼的,只要次数不超过我们指定的个数,看看能组合出多少种组合来,最后判断一下有多少个数组合出来了,多少个数没有组合出来那么这就是答案。由此可以得出第一个特点:题目是 组合问题,是完全背包问题的变形:有几个物品,每个物品无限个,每个物品选任意个,能否凑到某个重量。
第二:我们如何判断这个题目是否有无数个值会组合不出来呢?我们想一下什么样的就组合不出来,例如2,4,6最大公约数是2所以奇数组合不出来,因为他只能组合出gcd的倍数。例如30,60最大公约数是30,所以只要不是30的倍数的就一定组合不出来,由此我们可以发现一些问题组合数和gcd有关,只要gcd不是1的话那么它就有无数种数组合不出来。这里用到裴蜀定理 ,任意两个数的组合必定是他们gcd的倍数,同样可以推广到更多数:如果这些数的gcd的d不是1那么有无数个数组合不出来
第三:闫氏DP分析法:
-
根据闫氏DP分析法我们可以知道dp问题可以将其分解为两个步骤:第一种是状态表示,第二种是状态计算。
-
我们所有的背包问题都是围绕我们对于集合的定义来的,所以这个定义是非常重要的!!!我们将集合定义为:所有只从前i个包子中选择,数量为j的集合是否能够达到题目要求的包子数,是个bool数组。
-
状态计算:由于完全背包是可以无限次的选择物品的,所以我们不能和01背包一样,只将其分解为选或者不选,因为它可以有很多很多种选择,可以不选,可以选一种,可以选两种...只要题目要求包子数量(背包体积)足够大就可以。
-
如果他不选择包子 i 那么这种情况相当于从(1,i - 1)中选择数量不超过j的情况是一样的所以我们的表达式是:f[i-1][j]。
-
如果他选择物品 i 那么这样又该如何表示呢?我们并不知道他到底要选择几个物品,那应该怎么做呢?假如我们选择一个的话那么就应该写为f[i-1][j-vi];假如我们选择两个的话那么就应该写为f[i-1][j-2*vi];假如我们选择k个的话那么就应该写为f[i-1][j-k*vi],那么我们最终的答案就应该在这些集合之中。
-
所以f(i,j) = f(i-1 , j) || f(i-1 , j - v) || f(i-1 , j - 2v) || ........|| f(i-1 , j - (j/v)*v);
-
所以f(i,j-v) = f(i-1 , j - v) || f(i-1 , j - 2*v) || f(i-1 , 3*v) || ........f(i-1 , j - (j/v)*v);
-
由上述两个式子,我们可以知道如果将 j 替换成 j-vi 两个式子非常相似。f[ i ] [ j ] = f[ i -1][ j ] || f[ i ][ j - vi ] ;
第四:书写主函数,构建整体框架:
-
输入值,并且根据裴蜀定理求出最大公约数看看是不是1,如果不是1那么必定有无数个值组合不出来,那么直接输出INF。初始化一下我们的f数组全部赋值为0,初始化我们的f[0][0] = true。为什么?根据我们对集合的定义来分析:只从前i个包子中选择,数量为j的集合是否能够达到题目要求的包子数。那么f[0][0]代表前0个包子中选择,数量为0的集合是可能的所以初始化为true。
for(int i = 1 ; i <= n ; ++ i){ for(int j = 0 ; j <= 10000 ; ++ j){ f[i][j] = f[i-1][j] || (j >= arr[i] ? f[i][j - arr[i]] : false) ; } }
-
d==1 的话我们就进入双重for循环。第一个for就是包子种类,第二个for就是包子数量。那么问题来了。我们怎么确定数量最大值就是10000呢?那么当qcd为1时,最大不能表示出来的数必定有个上界,因为两个数a,b(当gcd=1时),最大不能表示出数是:(a-1)(b-1)-1。当数字更多的时候,这个上界必然更小(可选的数字变多了),而99和98是100内最大的互质的数,所以这个上界选择10000。
-
我们之前分析出了f[ i ] [ j ] = f[ i -1][ j ] || f[ i ][ j - vi ] ;但是注意一个问题:选择一个,选择两个,是在所需包子数大于我们的这一笼包子数的情况下才可以选,假如所需包子数都要小于这一笼包子数的话就不可以选了!所以我们选择了用三目运算符 (j >= arr[i] ? f[i][j - arr[i]] : false) ;这句话的意思是如果 j >= arr[i] 是对的话那么则返回f[i][j - arr[i]] ;如果不对则返回false,那么f[ i ] [ j ] = f[ i -1][ j ] || f[ i ][ j - vi ]这就是错了就代表组合不出这个数。
-
最后我们只需要在遍历一遍,看看哪些数是组合不出来的,组合不出来就res++。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110 ;
int n ;
bool f[N][10010];
int arr[N];
int gcd(int a , int b){
return b ? gcd(b,a%b):a;
}
int main()
{
cin>>n;
int d = 0;
for(int i = 1 ; i <= n ; ++i){
cin>>arr[i];
d = gcd(d,arr[i]);
}
memset(f, 0, sizeof f);
f[0][0] = true;
if(d != 1) cout<<"INF"<<endl;
else{
for(int i = 1 ; i <= n ; ++ i){
for(int j = 0 ; j <= 10000 ; ++ j){
f[i][j] = f[i-1][j] || (j >= arr[i] ? f[i][j - arr[i]] : false) ;
}
}
int res = 0;
for(int i = 0 ; i <= 10000 ; i ++){
if(!f[n][i]) res ++;
}
cout<<res;
}
return 0;
}