数据结构/C++:红黑树

news2024/10/7 2:17:53

数据结构/C++:红黑树

    • 概念
    • 实现
      • 基本结构
      • 插入
        • uncle为红色节点
        • uncle为黑色节点
    • 总代码展示


概念

红黑树是一种二叉搜索树,一般的二叉搜索会发生不平衡现象,导致搜索效率下降,于是学者们开始探索如何让二叉搜索树保持平衡,这种树叫做自平衡二叉搜索树。起初学者发明了AVL树,其通过一定算法保持了二叉搜索树的严格平衡,不久后Rudolf Bayer发明了红黑树,红黑树的平衡是较为宽泛的,为了保持平衡,红黑树付出的代价比AVL树更小。因此红黑树被更为广泛的使用,比如Java,C++,python中,使用的自平衡二叉搜索树都是红黑树,而不是AVL树。

如果想了解AVL树,可以看这篇博客:[数据结构/C++:AVL树]

红黑树的要求如下:

红黑树中,最长路径的长度不会超过最短路径的两倍

先解释一下路径的概念:从根走到nullptr
有不少人认为路径是从根走到叶子节点,这是不正确的。

红黑树用了五条规则来限制一棵树,从而达到以上要求:

  1. 每个节点不是红色就是黑色
  2. 根节点一定是黑色
  3. 不可以出现连续的红色节点(黑色可以连续出现)
  4. 每一条路径都包含相同数目的黑色节点
  5. nullptr视为黑色节点

只要满足以上五个条件,那么这棵树就是一颗红黑树,而且满足最长路径的长度不会超过最短路径的两倍。为什么呢?

五条规则中,我标红了3,4两条规则:

  1. 不可以出现连续的红色节点(黑色可以连续出现)
  2. 每一条路径都包含相同数目的黑色节点

由于每一条路径都必须包含相同数目的黑色节点,现在我们假设一棵红黑树,所有路径的黑色节点数目都是x,那么最短的路径长度就是全为黑色节点,长度为x
如果想让一条路径变长,那么就只能插入更多的红色节点(因为黑色节点数目相同),但是红色节点又不能连续出现,所以只能是黑红黑红黑红黑红黑红......这样排列,一个黑节点匹配一个红节点,因此最长路径的长度就是黑色节点的两倍2x
可以发现,红黑树通过这两条核心规则,保证了二叉搜索树的平衡。

比如以下就是一颗红黑树:
在这里插入图片描述

其最短路径为最左侧的路径,长度为2,即两个黑节点。
其最长路径为最右侧的路径,长度为4,即一红一黑排列。

要注意的是:不是所有的红黑树都会出现以上的全黑路径,或者一红一黑路径的,这只是极端情况

接下来我们通过实现红黑树,来了解红黑树是如何自平衡的:


实现

基本结构

首先我们要在节点中加入一个成员来表示节点的颜色,颜色有红黑和黑色两种状态,这里我使用枚举来区分两者:

enum Colour
{
    RED,
    BLACK
};

在某些红黑树的实现中,使用bool值来表示红黑颜色,这也是可以的,但是本博客以枚举来表示颜色。

节点类:

template<class K, class V>
struct RBTreeNode
{
    RBTreeNode* _left;
    RBTreeNode* _right;
    RBTreeNode* _parent;
    pair<K, V> _kv;
    Colour _col;
};

_left:左子树
_right:右子树
_parent:父节点
_kv:节点存储的值
_col:该节点的颜色

节点类还需要一个构造函数进行初始化,现在的问题就是:新的节点要初始化为什么颜色?
先来考虑一下:插入红色节点和插入黑色节点,谁对红黑树影响大?
对于一棵红黑树,其所有路径的黑色节点数目都相同,如果我们在某一条路径末尾插入了黑色节点,那么整棵树的所有其它路径都会少一个黑节点。而插入红色节点只影响当前路径,所以新节点应该是红色节点

构造函数:

RBTreeNode(const pair<K, V>& kv)
    : _left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
    , _kv(kv)
    , _col(RED)//初始化为红节点
{}

接着就是红黑树本体,类中只存储一个根节点_root

template<class K, class V>
class RBTree
{
    typedef RBTreeNode<K, V> Node;
private:
	Node* _root = nullptr;
}

现在我们有了红黑树的基本结构,接下来就实现它的插入操作:


插入

那么我们先写出当基本的二叉搜索树的插入代码逻辑,既然要插入,那么就要先找到合适的位置插入,代码如下:

bool Insert(const pair<K, V>& kv)
{
    if (_root == nullptr)
    {
        _root = new Node(kv);
        _root->_col = BLACK;//保持根为黑节点
    }

    Node* cur = _root;
    Node* parent = nullptr;

    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }

    cur = new Node(kv);

    if (parent->_kv.first > kv.first)
        parent->_left = cur;
    else
        parent->_right = cur;

    cur->_parent = parent;
   
   //调整红黑树
   //......
   //......
   //......
   
    return true;
}

接下来,我先解析以上代码的逻辑:

if (_root == nullptr)
{
	_root = new Node(kv);
    _root->_col = BLACK;//保持根为黑节点
}

如果我们插入节点时,根节点_root为空,说明当前整棵树都为空,那么我们直接插入值作为根节点即可,但是根节点必须是黑色节点,而我们新插入的节点是红色,所以要将其调整为黑色节点。


while (cur)
{
	if (cur->_kv.first < kv.first)
	{
		parent = cur;
		cur = cur->_right;
	}
	else if (cur->_kv.first > kv.first)
	{
		parent = cur;
		cur = cur->_left;
	}
	else
	{
		return false;
	}
}

以上代码,是在找到合适的插入位置,当key大于当前节点cur->_kv.first < kv.first,那么cur就向左寻找,反之向右寻找。如果当前节点值等于key,那么说明该节点已经存在,返回false代表插入失败。当我们的cur为空指针,说明已经找到了插入的节点,此时跳出循环进行插入。


cur = new Node(kv);

if (parent->_kv.first > kv.first)
	parent->_left = cur;
else
	parent->_right = cur;

cur->_parent = parent;

到达此处,说明前面已经找到插入的位置了,而parent节点就是插入位置的父亲节点。根据key的大小,来判断插入到左边还是右边,插入完成后,再让新节点的_parent指向parent

至此我们就完成了插入操作,接下来就要根据不同情况对红黑树进行调整。


对于红黑树的插入,我们需要关注新节点的父亲parent,祖父grandfather,叔叔uncle三个节点:
在这里插入图片描述

  1. 先根据父亲节点的颜色,来判断是否需要调整

父亲节点为黑色:
在这里插入图片描述
新插入的节点默认为红色,所以新插入节点不会影响路径上黑色节点的数目,而parent是黑节点,我们也没有出现连续的红色节点,所以这种情况无需任何调整,直接插入就可以。

父亲节点为红色:
在这里插入图片描述
如果父亲节点为红色,我们就会出现连续的红色节点,这时我们就需要进行调整了

以上两种情况总结为:

parent为黑色,直接插入
parent为红色,插入后需要进行调整

parent为红色,我们就需要再根据uncle的颜色,将插入分类两类:uncle为红色以及uncle为黑色
在这里插入图片描述
值得注意的是:由于parent是红色节点,此时的grandfather一定是黑色节点,因为不能出现连续红色节点
这两种情况的操作不同,我们先看到uncle为红色的情况:


uncle为红色节点

uncle节点为红色,此时需要进行变色

变色如下:
在这里插入图片描述

由于新插入了红色的cur节点,此时parentcur出现了连续的红色节点,于是我们将parent改为黑色。但是此时以parent为根的所有路径就会多出一个黑节点,于是把grandfather变为红色,来抵消这个新增的黑节点。但是此时以uncle为根的路径又会少一个黑节点,于是把uncle变黑。

但是我们grandfather变为了红色,这有可能会影响到上一层节点,比如这样:
在这里插入图片描述
我们把grandfather变红之后,又出现了两个红色节点相连的情况,所以我们要写一个while循环,来反复向上检查。

当前代码如下:

while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在)
{
    Node* grandfather = parent->_parent;
    if (parent == grandfather->_left)
    {
        Node* uncle = grandfather->_right;

        //uncle存在且为红节点
        if (uncle && uncle->_col == RED)
        {
            parent->_col = uncle->_col = BLACK;
            grandfather->_col = RED;

            cur = grandfather;
            parent = cur->_parent;
        }
        else//uncle为黑节点 
        {
            //其它处理
        }
    }
    else
    {
        Node* uncle = grandfather->_left;

        //uncle存在且为红节点
        if (uncle && uncle->_col == RED)
        {
            parent->_col = uncle->_col = BLACK;
            grandfather->_col = RED;

            cur = grandfather;
            parent = cur->_parent;
        }
        else//uncle为黑节点 
        {
        	//其它处理
        }
    }
}

_root->_col = BLACK;//在循环内部不判断root情况,统一处理

代码解析:

while (parent && parent->_col == RED)

该代码用于检测curparent的颜色,通过我们前面的推导,如果parent为红色才需要调整,因此进入循环的条件之一是parent为红色。另外的parent有可能为nullptr,此时我们要避免访问空指针,所以空指针也不能进循环


if (parent == grandfather->_left)
{  }
else
{ }

这一段代码是在检测parent 节点是grandfather的左子树还是右子树,这将涉及到我们如何找uncle以及下一种情况的调整,此时我们要分类讨论。当parent == grandfather->_left成立,那么uncle就是grandfather的右子树:Node* uncle = grandfather->_right;,反之就是左子树


if (uncle && uncle->_col == RED)
{
	parent->_col = uncle->_col = BLACK;
	grandfather->_col = RED;

	cur = grandfather;
	parent = cur->_parent;
}      

我们找到uncle后,如果uncle是红色,那么直接进行变色操作,把parentuncle的颜色变为黑色,grandfather变为红色。
随后由于我们的变色操作可能会影响上一层,此时调整节点,进入下一次while循环


在整个while循环外侧,还有一句代码:

_root->_col = BLACK;

这是因为我们在先前的while循环中,有可能出现对_root节点的操作,导致_root的颜色改变,而_root需要保持黑色。如果我们在循环内部,每一次都检测_root有点麻烦了,于是我们直接在每一次调整完节点后,把_root强行矫正为黑色

至此我们就讨论完了uncle为红色节点的情况,接下来我们就讨论uncle为黑色节点:


uncle为黑色节点

由于红黑树中,nullptr也算作黑色节点,所以uncle为黑色分为以下两种情况:

  1. uncle为空指针
  2. uncle不为空指针

图示如下:
在这里插入图片描述

如果 uncle为空指针,那么cur一定是新插入的节点

因为如果cur不是新插入的节点,那么curparent一定有一个原先是黑色节点,不然会出现连续的红色节点。但是如果curparent有一个是黑色节点,那么grandfather的左子树就比右子树多出一个黑节点,这就违背了红黑树规则。无论怎样,原先的树都不可能符合规则,所以cur一定是新插入的节点,破坏了规则

如果 uncle不为空指针,那么cur一定是从黑色节点变成的红色节点(不是新插入的)

因为如果uncle存在,那么grandfather的右子树就存在一个黑节点,而parent是红节点,所以curparent的右子树中都至少有一个黑节点,才能保证每一条路径黑节点数目相同。因此cur原先一定是黑节点,是因为cur下层插入了新节点,然后通过while循环向上走,影响到了当前层

对于这种uncle为黑色的情况,我们需要通过旋转+变色来维持红黑树。

旋转又分为单旋和双旋:

curparent的关系和parentgrandfather的关系一致时,需要进行单旋

比如我们刚刚的情况:
在这里插入图片描述
curparent的左子树,parentgrandfather的左子树,关系一致。
我们需要对其进行右单旋+变色:
在这里插入图片描述
这个旋转的算法在此我就不过多讲解了,可以去AVL树的博客中了解。我重点讲解一下变色和旋转的合理性:

一次插入过程中,走到这一步,说明前面一定经过了uncle为红色的情况,而uncle为红色的情况进行变色并不会对任何路径的黑色节点数目造成影响,因此目前还是符合黑色节点数目相同规则的
同为parent的子树,以curC为根的路径,黑节点数目相同
同为grandfather的子树,以parentuncle为根的路径黑节点数目相同
parent是红色节点,所以curC以及uncle为根的路径,黑节点数目都相同


进行单旋,会把c树交给grandfather做子树,而cuncle为根的路径黑节点数目相同,不违背规则(旋转的合理性)


旋转后,parent作新根,grandfathercur作为左右子树grandfather为根的路径,整体上就会比以cur为根的路径多出一个黑节点(即grandfather本身)
因此,将grandfather改为红节点,来平衡parent左右子树的黑节点
而红色节点不能连续出现,再把parent改为黑节点

curparent的关系和parentgrandfather的关系不一致时,需要进行双旋

在这里插入图片描述
以上结构中,curparent的左子树,parentgrandfather的右子树,关系不一致,要进行双旋。
同样的,讲解一下变色和旋转的合理性:

一次插入过程中,走到这一步,说明前面一定经过了uncle为红色的情况,而uncle为红色的情况进行变色并不会对任何路径的黑色节点数目造成影响,因此目前还是符合黑色节点数目相同规则的
同为parent的子树,以curA为根的路径,黑节点数目相同
同为cur的子树,以BC为根的路径,黑节点数目相同
由于cur是红节点,所以以ABC为根的路径,黑节点数目相同
相同的手段,由于parent是红节点,所以Auncle为根的路径的黑节点数目相同
因此ABCuncle为根的路径,黑节点数目都相同


进行双旋,会把C子树交给grandfather做子树,而Cuncle黑节点数目相同,不违背规则也会把B交给parent做子树
AB黑节点数目相同,不违背规则
旋转后,cur作新根,grandfatherparent作为左右子树grandfather为根的路径,整体上就会比以parent为根的路径多出一个黑节点(grandfather本身)
因此,将grandfather改为红节点,来平衡cur左右子树的黑节点而红色节点不能连续出现,再把cur改为黑节点

以上单旋和双旋的变色,看似复杂,其实最后都是把新根的颜色变为黑色,新根的左右子树变为红色。由于我们旋转后,新根都是黑节点,所以不会影响上层,可以直接跳出循环

代码如下:

parent == grandfather->_left

else//uncle为黑节点 (旋转)
{
    if (cur == parent->_left)
    {
        RotateR(grandfather);//右单旋
        parent->_col = BLACK;//变色
        grandfather->_col = RED;//变色
    }
    else
    {
        RotateL(parent);//左右双旋 - 左单旋
        RotateR(grandfather);//左右双旋 - 右单旋

        cur->_col = BLACK;//变色
        grandfather->_col = RED;//变色
    }

    break;//旋转后一定平衡
}

parent == grandfather->_right

else//uncle为黑节点 (旋转)
{
    if (cur == parent->_right)
    {
        RotateL(grandfather);//左单旋
        parent->_col = BLACK;//变色
        grandfather->_col = RED;//变色
    }
    else
    {
        RotateR(parent);//右左双旋 - 右单旋
        RotateL(grandfather);//右左双旋 - 左单旋

        cur->_col = BLACK;//变色
        grandfather->_col = RED;//变色
    }

    break;//旋转后一定平衡
}

insert总代码:

bool Insert(const pair<K, V>& kv)
{
    if (_root == nullptr)
    {
        _root = new Node(kv);
        _root->_col = BLACK;//保持根为黑节点
    }

    Node* cur = _root;
    Node* parent = nullptr;

    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }

    cur = new Node(kv);

    if (parent->_kv.first > kv.first)
        parent->_left = cur;
    else
        parent->_right = cur;

    cur->_parent = parent;

    while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在)
    {
        Node* grandfather = parent->_parent;
        if (parent == grandfather->_left)
        {
            Node* uncle = grandfather->_right;

            //uncle存在且为红节点
            if (uncle && uncle->_col == RED)
            {
                parent->_col = uncle->_col = BLACK;
                grandfather->_col = RED;

                cur = grandfather;
                parent = cur->_parent;
            }
            else//uncle不存在或为黑节点 (旋转)
            {
                if (cur == parent->_left)
                {
                    RotateR(grandfather);
                    parent->_col = BLACK;
                    grandfather->_col = RED;
                }
                else
                {
                    RotateL(parent);
                    RotateR(grandfather);


                    cur->_col = BLACK;
                    grandfather->_col = RED;
                }

                break;//旋转后一定平衡
            }
        }
        else
        {
            Node* uncle = grandfather->_left;

            //uncle存在且为红节点
            if (uncle && uncle->_col == RED)
            {
                parent->_col = uncle->_col = BLACK;
                grandfather->_col = RED;

                cur = grandfather;
                parent = cur->_parent;
            }
            else//uncle不存在或为黑节点 (旋转)
            {
                if (cur == parent->_right)
                {
                    RotateL(grandfather);
                    parent->_col = BLACK;
                    grandfather->_col = RED;
                }
                else
                {
                    RotateR(parent);
                    RotateL(grandfather);

                    cur->_col = BLACK;
                    grandfather->_col = RED;
                }

                break;//旋转后一定平衡
            }
        }
    }

    _root->_col = BLACK;//在循环内部不判断root情况,统一处理

    return true;
}

总代码展示

红黑树总代码:
RBTree.h

#pragma once
#include <iostream>
#include <assert.h>
using namespace std;

enum Colour
{
    RED,
    BLACK
};

template<class K, class V>
struct RBTreeNode
{
    RBTreeNode* _left;
    RBTreeNode* _right;
    RBTreeNode* _parent;
    pair<K, V> _kv;
    Colour _col;

    RBTreeNode(const pair<K, V>& kv)
        : _left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _kv(kv)
        , _col(RED)
    {}
};

template<class K, class V>
class RBTree
{
    typedef RBTreeNode<K, V> Node;
public:
    bool Insert(const pair<K, V>& kv)
    {
        if (_root == nullptr)
        {
            _root = new Node(kv);
            _root->_col = BLACK;//保持根为黑节点
        }

        Node* cur = _root;
        Node* parent = nullptr;

        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }

        cur = new Node(kv);

        if (parent->_kv.first > kv.first)
            parent->_left = cur;
        else
            parent->_right = cur;

        cur->_parent = parent;

        while (parent && parent->_col == RED)//只有parent为红,才更新 (parent可能不存在)
        {
            Node* grandfather = parent->_parent;
            if (parent == grandfather->_left)
            {
                Node* uncle = grandfather->_right;

                //uncle存在且为红节点
                if (uncle && uncle->_col == RED)
                {
                    parent->_col = uncle->_col = BLACK;
                    grandfather->_col = RED;

                    cur = grandfather;
                    parent = cur->_parent;
                }
                else//uncle不存在或为黑节点 (旋转)
                {
                    if (cur == parent->_left)
                    {
                        RotateR(grandfather);
                        parent->_col = BLACK;
                        grandfather->_col = RED;
                    }
                    else
                    {
                        RotateL(parent);
                        RotateR(grandfather);

                        cur->_col = BLACK;
                        grandfather->_col = RED;
                    }

                    break;//旋转后一定平衡
                }
            }
            else
            {
                Node* uncle = grandfather->_left;

                //uncle存在且为红节点
                if (uncle && uncle->_col == RED)
                {
                    parent->_col = uncle->_col = BLACK;
                    grandfather->_col = RED;

                    cur = grandfather;
                    parent = cur->_parent;
                }
                else//uncle不存在或为黑节点 (旋转)
                {
                    if (cur == parent->_right)
                    {
                        RotateL(grandfather);
                        parent->_col = BLACK;
                        grandfather->_col = RED;
                    }
                    else
                    {
                        RotateR(parent);
                        RotateL(grandfather);

                        cur->_col = BLACK;
                        grandfather->_col = RED;
                    }

                    break;//旋转后一定平衡
                }
            }
        }

        _root->_col = BLACK;//在循环内部不判断root情况,统一处理

        return true;
    }
    
    //左单旋
    void RotateL(Node* parent)
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;

        parent->_right = subRL;
        if (subRL)
            subRL->_parent = parent;

        subR->_left = parent;
        Node* ppNode = parent->_parent;
        parent->_parent = subR;

        if (parent == _root)
        {
            _root = subR;
            subR->_parent = nullptr;
        }
        else
        {
            if (ppNode->_left == parent)
                ppNode->_left = subR;
            else
                ppNode->_right = subR;

            subR->_parent = ppNode;
        }
    }

    //右单旋
    void RotateR(Node* parent)
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;

        parent->_left = subLR;
        if (subLR)
            subLR->_parent = parent;

        subL->_right = parent;
        Node* ppNode = parent->_parent;
        parent->_parent = subL;

        if (parent == _root)
        {
            _root = subL;
            subL->_parent = nullptr;
        }
        else
        {
            if (ppNode->_left == parent)
                ppNode->_left = subL;
            else
                ppNode->_right = subL;

            subL->_parent = ppNode;
        }
    }

    size_t Size()
    {
        return _Size(_root);
    }

    size_t _Size(Node* root)
    {
        if (root == nullptr)
            return 0;;

        return _Size(root->_left) + _Size(root->_right) + 1;
    }

    Node* Find(const K& key)
    {
        Node* cur = _root;

        while (cur)
        {
            if (cur->_kv.first < key)
            {
                cur = cur->_right;
            }
            else if (cur->_kv.first > key)
            {
                cur = cur->_left;
            }
            else
            {
                return cur;
            }
        }

        return nullptr;
    }

    //中序
    void InOrder()
    {
        _InOrder(_root);
        cout << "end" << endl;
    }

    int Height()
    {
        return _Height(_root);
    }

private:
    //中序
    void _InOrder(Node* root)
    {
        if (root == nullptr)
            return;

        _InOrder(root->_left);
        cout << root->_kv.first << " - ";

        _InOrder(root->_right);
    }

    //求高度
    int _Height(Node* root)
    {
        if (root == nullptr)
            return 0;

        return max(Height(root->_left), Height(root->_right)) + 1;
    }

    Node* _root = nullptr;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1524927.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

玩转C语言——数组初探

一、前言 通过前面的学习&#xff0c;我们已了解C语言的结构变量、分支结构和循环结构。今天&#xff0c;我们一起来认识C语言的另一知识点——数组。先赞后看&#xff0c;养成习惯。 二、数组概念 学习数组&#xff0c;我们要明白数组是什么。在我看来&#xff1a;数组是⼀组…

macOS 安装 NetLogo 6.4.0

netlogo 下载地址 NetLogo-6.4.0.dmg参考 netlogo 官网

sqllab第二十七关通关笔记

知识点&#xff1a; union select 关键字过滤 通过<> /**/进行截断处理 un<>ion sel<>ect 没效果uni/**/on sel/**/ect 被过滤了双写绕过 这关对select进行了多重过滤&#xff0c;无法进行双写绕过 大小写绕过 UNion SElect (这关可以用&am…

单片机第四季-第二课:uCos2源码-BSP

1&#xff0c;初始uCos2 文件中uC开头的为uCos相关的。 2&#xff0c;uCos2源码工程建立 建立Source Insight工程 寻找main函数 (1)RTOS其实就是一个大的裸机程序&#xff0c;也是从main开始运行的 (2)main之前也是有一个汇编的启动文件的 (3)main中调用了很多初始化函数 bsp部…

linux——进程(1)

目录 一、概念 1.1、认识进程 1.2、进程描述符&#xff08;PCB&#xff09; 1.3、进程的结构体&#xff08;task_struct&#xff09; 二、查看进程 三、获取进程的Pid和PPid 3.1、通过系统调用获取进程的PID和PPID 四、创建进程 4.1、fork() 4.2、用if进行分流 五、…

【PyTorch】基础学习:一文详细介绍 torch.save() 的用法和应用

【PyTorch】基础学习&#xff1a;一文详细介绍 torch.save() 的用法和应用 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f44…

SpringCloudAlibaba系列之Seata实战

目录 环境准备 1.下载seata安装包 2.修改配置文件 3.准备seata所需配置文件 4.初始化seata所需数据库 5.运行seata 服务准备 分布式事务测试 环境准备 1.下载seata安装包 Seata-Server下载 | Apache Seata 本地环境我们选择稳定版的二进制下载。 下载之后解压到指定目录…

HTML设置语言

一、代码示例 相关代码&#xff1a; <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>HTML设置语言</title> </head> <body><marquee>我爱你</marquee> <!-- …

2024年 前端JavaScript Web APIs 第三天 笔记

3.1-表单全选反选案例 <!DOCTYPE html><html><head lang"en"><meta charset"UTF-8"><title></title><style>* {margin: 0;padding: 0;}table {border-collapse: collapse;border-spacing: 0;border: 1px solid …

CentOS 7 编译安装 Git

CentOS 7 编译安装 Git 背景来源删除旧版本 Git安装依赖包下载 Git 源代码检验相关依赖&#xff0c;设置安装路径编译安装添加 Git 环境变量重新加载配置文件查看版本号参考文献 背景来源 为什么要安装新版本呢&#xff1f; 因为无聊&#xff0c;哈哈哈&#xff0c;其实也不是…

【matlab】如何批量修改图片命名

【matlab】如何批量修改图片命名 (●’◡’●)先赞后看养成习惯&#x1f60a; 假如我的图片如下&#xff0c;分别是1、2、3、4、5的命名 需求一&#xff1a;假如现在我需要在其后面统一加上_behind字符串&#xff0c;并且保留原命名&#xff0c;同时替换掉原先的图片&#xf…

论文阅读——RSGPT

RSGPT: A Remote Sensing Vision Language Model and Benchmark 贡献&#xff1a;构建了一个高质量的遥感图像描述数据集&#xff08;RSICap&#xff09;和一个名为RSIEval的基准评估数据集&#xff0c;并在新创建的RSICap数据集上开发了基于微调InstructBLIP的遥感生成预训练…

【Visual Studio】VS转换文件为UTF8格式

使用高级保存选项 更改VS的编码方案 首先需要打开高级保存选项 然后打开 文件 —> 高级保存选项 即可进行设置

Git——分支详解

目录 Git分支1、开始使用分支1.1、新增分支1.2、更改分支名称1.3、删除分支1.4、切换分支1.5、切换分支时1.6、要切换到哪个分支&#xff0c;首先要有那个分支 2、分支原理2.1、单个分支2.2、多个分支2.3、切换分支时的逻辑1、更新暂存区和工作目录2、变更HEAD的位置 2.4、如果…

微信小程序之tabBar

1、tabBar 如果小程序是一个多 tab 应用&#xff08;客户端窗口的底部或顶部有 tab 栏可以切换页面&#xff09;&#xff0c;可以通过 tabBar 配置项指定 tab 栏的表现&#xff0c;以及 tab 切换时显示的对应页面。 属性类型必填默认值描述colorHexColor是tab 上的文字默认颜色…

代码随想录day23(2)二叉树:从中序与后序遍历序列构造二叉树(leetcode106)

题目要求&#xff1a;根据一棵树的中序遍历与后序遍历构造二叉树。 思路&#xff1a;408的经典题目&#xff0c;思路和手撕的思路差不多&#xff0c;先从后序中找到根节点&#xff0c;再从中序中找到此节点&#xff0c;然后分割成左右子树&#xff0c;记录一下左右子树的节点个…

【MySQL】MySQL事务

文章目录 一、CURD不加控制&#xff0c;会有什么问题&#xff1f;二、事务的概念三、事务出现的原因四、事务的版本支持五、事务提交方式六、事务常见操作方式七、事务隔离级别1.理解隔离性12.隔离级别3.查看与设置隔离性4.读未提交【Read Uncommitted】5.读提交【Read Committ…

问题解决:关于tomcat无法连接问题的解决

安装tomcat并配置环境变量 下载tomcat并安装 首先去tomcat官方网站,下载tomcat 进入tomcat官方网站之后&#xff0c;查看jdk应该对应的tomcat版本&#xff0c;点击图示的按钮 点击完毕之后&#xff0c;可以看到下述的页面 图中的表格可以看到对应的jdk版本与tomcat的版本之…

arm-linux实现onvif server+WS-UsernameToken令牌验证

目录 一、环境搭建 1、安装openssl 2、安装bison 3、安装flex 二、gsoap下载 三、编译x86版本gsoap 四、编译arm-linux版本gsoap 1、交叉编译openssl 1.1、下载openssl 1.2、交叉编译 2、交叉编译zlib 2.1、下载zlib 2.2、交叉编译 3、交叉编译gsoap 3.1、编译过…

C++之deque与vector、list对比分析

一.deque讲解 对于vector和list&#xff0c;前一个是顺序表&#xff0c;后一个是带头双向循环链表&#xff0c;前面我们已经实现过&#xff0c;这里就不再讲解了&#xff0c;直接上deque了。 deque&#xff1a;双端队列 常见接口大家可以查看下面链接&#xff1a; deque - …