【AI系列】Torchvision、Torchaudio 和 Torchtext关系

news2025/1/8 4:40:16

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
img

  • 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老
  • 导航
    • 檀越剑指大厂系列:全面总结 java 核心技术点,如集合,jvm,并发编程 redis,kafka,Spring,微服务,Netty 等
    • 常用开发工具系列:罗列常用的开发工具,如 IDEA,Mac,Alfred,electerm,Git,typora,apifox 等
    • 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
    • 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
    • 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

博客目录

深度学习技术在人工智能领域的应用越来越广泛,而 PyTorch 作为一种流行的深度学习框架,为研究人员和开发者提供了强大的工具来构建和训练神经网络模型。在 PyTorch 生态系统中,有一些重要的扩展库,如 Torchvision、Torchaudio 和 Torchtext,它们与 PyTorch 密切相关,为用户提供了丰富的功能和工具。本文将探讨这些扩展库与 PyTorch 之间的对应关系,以及它们在深度学习应用中的作用和意义。

image-20240318013953507

首先,让我们来看看 Torchvision 与 PyTorch 之间的关系。Torchvision 是 PyTorch 的一个用于计算机视觉任务的扩展库。它提供了一系列图像处理工具、预训练模型以及数据集加载器,帮助用户轻松地构建和训练图像分类、目标检测、语义分割等计算机视觉模型。Torchvision 与 PyTorch 紧密集成,用户可以直接从 Torchvision 中导入模型和工具,与 PyTorch 的张量操作和自动求导功能无缝衔接,极大地简化了计算机视觉任务的开发流程。

torchtorchvisionpython
main / nightlymain / nightly>=3.8, <=3.11
2.20.17>=3.8, <=3.11
2.10.16>=3.8, <=3.11
2.0.00.15.1>=3.8, <=3.11
1.13.10.14.1>=3.7.2, <=3.10
1.13.00.14.0>=3.7.2, <=3.10
1.12.10.13.1>=3.7, <=3.10
1.12.00.13.0>=3.7, <=3.10
1.11.00.12.3>=3.7, <=3.10
1.10.20.11.3>=3.6, <=3.9
1.10.10.11.2>=3.6, <=3.9
1.10.00.11.1>=3.6, <=3.9
1.9.10.10.1>=3.6, <=3.9
1.9.00.10.0>=3.6, <=3.9
1.8.20.9.2>=3.6, <=3.9
1.8.10.9.1>=3.6, <=3.9
1.8.00.9.0>=3.6, <=3.9
1.7.10.8.2>=3.6, <=3.9
1.7.00.8.1>=3.6, <=3.8
1.7.00.8.0>=3.6, <=3.8
1.6.00.7.0>=3.6, <=3.8
1.5.10.6.1>=3.5, <=3.8
1.5.00.6.0>=3.5, <=3.8
1.4.00.5.0==2.7, >=3.5, <=3.8
1.3.10.4.2==2.7, >=3.5, <=3.7
1.3.00.4.1==2.7, >=3.5, <=3.7
1.2.00.4.0==2.7, >=3.5, <=3.7
1.1.00.3.0==2.7, >=3.5, <=3.7
<=1.0.10.2.2==2.7, >=3.5, <=3.7

接下来,我们来探讨 Torchaudio 与 PyTorch 之间的关系。Torchaudio 是 PyTorch 的一个用于音频处理任务的扩展库。它提供了一系列音频处理工具、预训练模型以及数据集加载器,帮助用户处理音频数据、构建音频识别、语音生成等音频处理模型。与 Torchvision 类似,Torchaudio 与 PyTorch 也是紧密集成的,用户可以直接从 Torchaudio 中导入模型和工具,与 PyTorch 的张量操作和自动求导功能无缝衔接,为音频处理任务的开发提供了便利。

torchtorchaudiopython
main / nightlymain / nightly>=3.8, <=3.10
2.1.02.1.0>=3.8, <=3.11
2.0.12.0.2>=3.8, <=3.11
2.0.02.0.1>=3.8, <=3.11
1.13.10.13.1>=3.7, <=3.10
1.13.00.13.0>=3.7, <=3.10
1.12.10.12.1>=3.7, <=3.10
1.12.00.12.0>=3.7, <=3.10
1.11.00.11.0>=3.7, <=3.9
1.10.10.10.1>=3.6, <=3.9
1.10.00.10.0>=3.6, <=3.9
1.9.10.9.1>=3.6, <=3.9
1.9.00.9.0>=3.6, <=3.9
1.8.20.8.2>=3.6, <=3.9
1.8.10.8.1>=3.6, <=3.9
1.8.00.8.0>=3.6, <=3.9
1.7.10.7.2>=3.6, <=3.9
1.7.00.7.0>=3.6, <=3.8
1.6.00.6.0>=3.6, <=3.8
1.5.00.5.0>=3.5, <=3.8
1.4.00.4.0==2.7, >=3.5, <=3.8

最后,我们来看看 Torchtext 与 PyTorch 之间的关系。Torchtext 是 PyTorch 的一个用于自然语言处理(NLP)任务的扩展库。它提供了一系列文本处理工具、预训练模型以及数据集加载器,帮助用户处理文本数据、构建文本分类、机器翻译等自然语言处理模型。Torchtext 与 PyTorch 同样紧密集成,用户可以直接从 Torchtext 中导入模型和工具,与 PyTorch 的张量操作和自动求导功能无缝衔接,为自然语言处理任务的开发提供了便利。

image-20240318014011966

PyTorch versiontorchtext versionSupported Python version
nightly buildmain>=3.8, <=3.11
2.2.00.17.0>=3.8, <=3.11
2.1.00.16.0>=3.8, <=3.11
2.0.10.15.2>=3.8, <=3.11
2.0.00.15.0>=3.8, <=3.11
1.13.10.14.1>=3.7, <=3.10
1.13.00.14.0>=3.7, <=3.10
1.12.00.13.0>=3.7, <=3.10
1.11.00.12.0>=3.6, <=3.9
1.10.00.11.0>=3.6, <=3.9
1.10.00.11.0>=3.6, <=3.9
1.9.10.10.1>=3.6, <=3.9
1.90.10>=3.6, <=3.9
1.8.10.9.1>=3.6, <=3.9
1.80.9>=3.6, <=3.9
1.7.10.8.1>=3.6, <=3.9
1.70.8>=3.6, <=3.8
1.60.7>=3.6, <=3.8
1.50.6>=3.5, <=3.8
1.40.52.7, >=3.5, <=3.8
0.4 and below0.2.32.7, >=3.5, <=3.8

综上所述,Torchvision、Torchaudio 和 Torchtext 是 PyTorch 生态系统中的重要组成部分,它们与 PyTorch 之间紧密相关,为不同领域的深度学习任务提供了丰富的功能和工具。通过这些扩展库,用户可以轻松地构建和训练计算机视觉模型、音频处理模型和自然语言处理模型,加速深度学习技术在各个领域的应用和发展。因此,在进行深度学习任务时,建议用户充分利用这些扩展库,以提高开发效率和模型性能,推动人工智能技术的不断进步。

觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

img
f

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1524820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

13 - grace数据处理 - 泄露误差改正 -正演建模法(Forward-Modeling)

grace数据处理 - 泄露误差改正 -正演建模法(Forward-Modeling) *0* 引言*1* Matlab代码实现0 引言 正演建模法最早是由Chen等提出的,本质是通过迭代的思想反求真实信号的过程,为什么要反求呢?因为在数据处理过程中做了球谐截断和空间滤波,使部分有用信号被湮灭,也就是有…

Sentinel篇:线程隔离和熔断降级

书接上回&#xff1a;微服务&#xff1a;Sentinel篇 3. 隔离和降级 限流是一种预防措施&#xff0c;虽然限流可以尽量避免因高并发而引起的服务故障&#xff0c;但服务还会因为其它原因而故障。 而要将这些故障控制在一定范围&#xff0c;避免雪崩&#xff0c;就要靠线程隔离…

email + celery+django 异步发送邮件功能的实现

主要流程&#xff1a; django通过发件服务器到收件服务器&#xff0c;最后到收件人 邮件配置设置需要打开SMTP/IMAP并获的授权码&#xff0c;完成授权功能实现发送给收件人 邮件配置请参考另一博客https://blog.csdn.net/qq_44238024/article/details/136277821 项目结构树…

[ROS 系列学习教程] rosbag Python API

ROS 系列学习教程(总目录) 本文目录 1. 构造函数与关闭文件2. 属性值3. 写bag文件内容4. 读bag文件内容5. 将bag文件缓存写入磁盘6. 重建 bag 文件索引7. 获取bag文件的压缩信息8. 获取bag文件的消息数量9. 获取bag文件记录的起止时间10. 获取话题信息与消息类型 rosbag 的 Pyt…

Python 编程中反斜杠 “\” 的作用:作为续行符和转义字符,处理文件路径和正则表达式时需特别注意。

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ Python 中的反斜杠 \ 可以被用作续行符&#xff0c;它允许你将一行代码分成多行来书写&#xff0c;以提高代码的可读性。这在处理长字符串、复杂的数学表达式或其他需要多行布局的代码时非常有用。 使…

使用三种方式读取文本文件

文章目录 &#x1f354;需求&#x1f384;思路⭐代码⭐效果&#x1f6f8;注意 在 Java 中&#xff0c;读取文件通常涉及以下几个步骤&#xff1a; 打开文件&#xff1a;首先需要创建一个文件对象&#xff0c;表示要读取的文件。这个文件对象可以包含文件路径、文件名等信息。 …

zookeeper快速入门五:用zookeeper实现服务注册与发现中心

系列&#xff1a; zookeeper快速入门一&#xff1a;zookeeper安装与启动-CSDN博客 zookeeper快速入门二&#xff1a;zookeeper基本概念-CSDN博客 zookeeper快速入门三&#xff1a;zookeeper的基本操作 zookeeper快速入门四&#xff1a;在java客户端中操作zookeeper-CSDN博客…

Tomcat Seeion 集群

部署&#xff1a;nginx服务器&#xff1a;11-11&#xff1b;tomcat1:11-3; tomcat2:11-6 nginx服务器11-11做搭建&#xff1a; [rootmcb-11 ~]# systemctl stop firewalld [rootmcb-11 ~]# setenforce 0 [rootmcb-11 ~]# yum install epel-release.noarch -y [rootmcb…

数据结构试卷第九套

1.时间复杂度 2.树&#xff0c;森林&#xff0c;二叉树的转换 2.1树转二叉树 给所有的兄弟节点之间加一条连线&#xff1b;去线&#xff0c;只保留当前根节点与第一个叶子节点的连线&#xff0c;删除它与其他节点之间的连线&#xff1b;然后根据左孩子右兄弟进行调整&#xf…

gitlab cicd问题整理

1、docker设置数据目录&#xff1a; 原数据目录磁盘空间不足&#xff0c;需要更换目录&#xff1a; /etc/docker/daemon.json //写入/etc/docker/daemon.json {"data-root": "/data/docker" } 2、Dockerfile中ADD指令不生效 因为要ADD的文件被.docker…

使用Python进行自然语言处理(NLP):NLTK与Spacy的比较【第133篇—NLTK与Spacy】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 使用Python进行自然语言处理&#xff08;NLP&#xff09;&#xff1a;NLTK与Spacy的比较 自…

[数据集][目标检测]焊接件表面缺陷检测数据集VOC+YOLO格式2292张10类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;2292 标注数量(xml文件个数)&#xff1a;2292 标注数量(txt文件个数)&#xff1a;2292 标注…

【鸿蒙HarmonyOS开发笔记】常用组件介绍篇 —— 弹窗组件

简介 弹窗是移动应用中常见的一种用户界面元素&#xff0c;常用于显示一些重要的信息、提示用户进行操作或收集用户输入。ArkTS提供了多种内置的弹窗供开发者使用&#xff0c;除此之外还支持自定义弹窗&#xff0c;来满足各种不同的需求。 下面是所有涉及到的弹窗组件官方文档…

NSSCTF 403,444,2145,3845,404,445

[SWPUCTF 2021 新生赛]简简单单的逻辑 py文件&#xff0c;使用pycharm打开进行分析 其中&#xff0c;hex()[2:]&#xff1a;将十进制转化为十六进制 zfill(2)&#xff1a;位数不足2&#xff0c;前补0 这里即将flag的ASCII码与key进行异或&#xff0c;再将每位转化为十六进制…

Prism的发布和订阅

首先需要设置一个发布和订阅的类 -- 这里发布和订阅的消息是string类型所以就只用PubSubEvent类 发布部分&#xff08;构造函数注入&#xff0c;发布个“Hello”&#xff09; 订阅部分&#xff1a; public partial class ViewC : UserControl {private readonly IEventAggrega…

文件的基础

一、文件 什么是文件 文件流&#xff1a; 一、1、文件的相关操作 创建文件的三种方式&#xff1a; public class FileCreate {public static void main(String[] args) {}//方式1 new File(String pathname)Testpublic void create01() {String filePath "e:\\news1.…

1987-2022年各省专利申请授权数据(8个指标))

1987-2022年各省专利申请授权数据&#xff08;8个指标&#xff09;&#xff09; 1、时间&#xff1a;1987-2023年 2、指标&#xff1a;国内专利申请受理量(项)、国内发明专利申请受理量(项)、国内实用新型专利申请受理量(项)、国内外观设计专利申请受理量(项)、国内专利申请授…

机器学习(26)回顾gan+文献阅读

文章目录 摘要Abstract一、李宏毅机器学习——GAN1. Introduce1.1 Network as Generator1.2 Why distribution 2. Generative Adversarial Network2.1 Unconditional generation2.2 Basic idea of GAN 二、文献阅读1. 题目2. abstract3. 网络架构3.1 Theoretical Results 4. 文…

JavaWeb:vue、AJax、ELement、maven、SpringBoot、、Http、Tomcat、请求响应、分层解耦

1 Vue 1.1 Vue介绍 VUE是前端框架&#xff0c;基于MVVM&#xff0c;实现数据双向绑定 框架是半基础软件&#xff0c;可重用的代码模型 1.2 Vue指令 <script src"js/vue.js"></script></head> <body><div id"id"><!--…

使用 VS Code + Github 搭建个人博客

搭建个人博客的方案 现在&#xff0c;搭建个人博客的方式有很多&#xff0c;门槛也很低。 可以选择已有平台&#xff1a; 掘金语雀知乎简书博客园SegmentFault… 也可以选择一些主流的博客框架&#xff0c;自行搭建。 HexoGitBookVuePressdumi… 如何选择&#xff1f; 我…