SLAM 算法综述

news2025/1/11 12:34:28

LiDAR SLAM
其主要思想是通过两个算法:一个高频激光里程计进行低精度的运动估计,即使用激光雷达做里程计计算两次扫描之间的位姿变换;另一个是执行低频但是高精度的建图与校正里程计,利用多次扫描的结果构建地图,细化位姿轨迹。

LOAM
论文:Lidar Odometry and Mapping in Real-time(RSS2014) Ji Zhang

LOAM使用了作者定义的特征点提取和匹配方法,主要去边角点和平面点。LOAM use a new defined feature system (corner and flat point), for the detail see its article.
LOAM假设每一次激光扫描过程中是匀速运动工程应用时要注意实际载体运动特性),并且用这个假设修正激光雷达数据的运动扭曲问题。在VLOAM中则是更进一步,使用视觉的里程计估计每一个扫描数据的运动。LOAM suppose linear motion within the scan swap (VLOAM further uses visual odometry to estimate it), and undistort the lidar points.
LOAM也有一个低频率调用的全局优化线程。

LOAM一文中提出,可以通过IMU进行辅助。所谓“辅助”就是在激光雷达两次扫描之间,利用IMU得到较为准确的变化轨迹,从而进行点云畸变的去除,从而不需要靠上次扫描获得的运动参数插值对这次的畸变进行去除,能够提升精度。但IMU的数据并没有参与到优化当中,所以IMU在LOAM算法中只起到了辅助作用

A-LOAM
代码:https://github.com/HKUST-Aerial-Robotics/A-LOAM,香港科技大学秦通博士

A-LOAM代码通过ROS运行。在LOAM原有代码基础上,使用Ceres-solver和Eigen库对其进行重构和优化,在保持原有算法原理的基础上,使其可读性大大增加。
主要区别:
1.LOAM中提供了使用IMU信息修正的接口, A-LOAM中省略了这一块。
2.A-LOAM中缺少了对提取到的特征点的筛选过程,具体可以参见LOAM的代码部分(对一些不好的边角点做了筛选)。
3.LOAM中作者解析地求出了雅各比的表达式(其中使用了一些小技巧统一了不同特征点的残差函数的导数表达),A-LOAM则是简单地使用了ceres提供的自动求导工具(这样可以节省开发的时间,得到了也是准确的解,但是运算时间会稍稍长些,具体可以参见ceres的官方文档)。

LeGO-LOAM
LeGO-LOAM:LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain .Tixiao Shan and B. Englot,
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.

LeGO-LOAM 是Tixiao Shan在原有LOAM基础上,做了一些改进包括:1、对前端里程计的前量化改造,提取地面点更适配水平安装的LiDAR; 2、使用SLAM中的Keyframe概念以及回环检测位姿图优化的方式对后端进行重构。

从文章名称,可以看出,LeGO-LOAM相对于LOAM的提升主要在于轻量级和地面优化。接下来,我将从论文的整体框架入手,详解介绍LeGO-LOAM和LOAM的区别和联系。

在这里插入图片描述
核心四个部分:分割,特征提取,雷达里程计,雷达建图。

分割模块通过对一帧的点云重投影到图像中,进行地面分割,非地面点被分割出来;
特征提取模块基于分割后的点使用和LOAM一样的方法提取边缘点和平面点;
雷达里程计模块基于提取的特征点构建约束关系,使用两次LM优化,得到姿态变换矩阵;
雷达建图模块将得到的特征点进一步处理,构建 的约束关系,构建全局地图。

在这里插入图片描述
GTSAM

GTSAM(Georgia Tech Smoothing and Mapping)是基于因子图的C++库,它由佐治亚理工学院的教授和学生们创造。它可以解决slam和sfm的问题,当然它也可以解决简单或者更加复杂的估计问题。
因子图是一种图模型,非常适合于复杂的估计问题的建模,比如SLAM或者是SFM( Structure from Motion)。

因子图的三个基本组成部分:
因子图(factor graph):它属于一个二分图,由因子和变量连接而成。
变量(variables):估计问题中的未知随机变量。
因子(factors):非线性因子表示变量之间的约束,在slam中,可能为landmark或者odometry的读数。

LIO-Mapping
LIO-Mapping:Tightly Coupled 3D Lidar Inertial Odometry and Mapping,H. Ye, Y. Chen, and M. Liu,IEEE International Conference on Robotics and Automation, pp. 3144-3150, 2019.

主要是借鉴LOAM和VINS-Mono的思想进行联合状态估计,工程层面和VINS-Mono一样,只不过是前端视觉部分换成了Lidar的前端进行特征关联,这是第一篇开源的Lidar-IMU紧耦合SLAM算法。

见《https://blog.csdn.net/weixin_44580210/article/details/120541054》

LIO-SAM
LIO-SAM: *Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping.Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela Rus.*2020

LIO-SAM 是Tixiao Shan在LeGO-LOAM的扩展,添加了IMU预积分因子和GPS因子:前端使用紧耦合的IMU融合方式,替代原有的帧间里程计,使得前端更轻量;后端沿用LeGO-LOAM,在此基础上融入了GPS观测。同时前端后端相互耦合,提高系统精度。

LIO-SAM中的扫描匹配优化部分代码是直接套用LOAM,该部分代码的最大特点是没有利用任何开源的优化库(ceres-solver, g2o, gtsam…)进行残差方程的优化,而是只基于Eigen库构造了高斯牛顿迭代算法对残差方程进行优化,获得最小二乘解.但是,为了提升对后端残差方程优化的理解,抛弃开源优化库只利用Eigen库构造优化过程是一个非常推崇的做法.

该算法是一个紧耦合的雷达惯导里程计(Tightly-coupled Lidar Inertial Odometry),借助的手段就是利用GT-SAM库中的方法。提出了一个利用GT-SAM的紧耦合激光雷达惯导里程计的框架。实现了高精度、实时的移动机器人的轨迹估计和建图。

框架的构成:
通过相对观测(两帧间的估计)及绝对观测(GPS),还包括回环检测,构成因子图。

这个框架必须要有激光雷达和IMU。可以没有回环和GPS。

IMU的作用:
用IMU的数据对激光雷达点云作畸变矫正为激光雷达里程计的优化提供一个初值

系统对IMU的作用:
获得的雷达里程计会用来估计IMU的零偏(bias)

点云匹配建图方式:
为了保障性能和实时,并不是将激光雷达一帧数据和全局地图进行匹配,而是和经过边缘化的历史地图进行匹配;这种当前帧和局部地图配置而不是全局地图的做法,可以显著提高系统的实时性。

局部地图构成:
通过选取关键帧的方式,利用滑窗的方法,将当前的关键帧和历史尺度和大小一致的子关键帧集合配准。

cartographer
谷歌于2016年开源了Cartographer的SLAM库。Cartographer可以使用2D或3D激光雷达来进行SLAM(同时定位与地图构建),用Grid(2D/3D)的形式建地图;局部匹配直接建模成一个非线性优化问题,通过IMU(惯性测量单元陀螺仪)获得比较靠谱的初值,再用Ceres库进行求解;后端用Graph来优化,用分支定界算法来加速;2D和3D的问题统一在一个框架下解决。

cartographer主要解决室内问题,LOAM室内外都可以,但是没有回环检测。Cartographer的3D部分,更像是2D的扩展:即用2D的思路去做3D的事情。而LOAM则主要解决3D问题,其核心思路难以解决2D问题。

Cartographer基本上实现了低成本雷达,低计算资源消耗,实时优化,精度尚可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1522785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

切面条-蓝桥杯?-Lua 中文代码解题第1题

切面条-蓝桥杯?-Lua 中文代码解题第1题 一根高筋拉面,中间切一刀,可以得到2根面条。 如果先对折1次,中间切一刀,可以得到3根面条。 如果连续对折2次,中间切一刀,可以得到5根面条。 那么&#xf…

【QT入门】VS2019+QT的开发环境配置

声明:该专栏为本人学习Qt知识点时候的笔记汇总,希望能给初学的朋友们一点帮助(加油!) 往期回顾: 【QT入门】什么是qt,发展历史,特征,应用,QtCreator-CSDN博客【QT入门】Windows平台下…

Java设计模式 | 设计模式概述和分类

独孤求败五重境界 利剑(“凌厉刚猛,无坚不摧,弱冠前以之与河朔群雄争锋。”)软剑(“紫薇软剑,三十岁前所用,误伤义士不祥,乃弃之深谷。”)重剑(“重剑无锋&a…

React 实现下拉刷新效果

简介 本文基于react实现下拉刷新效果,在下拉的时候会进入loading状态。 实现效果 效果如上图所示,在下拉到底部时候,会出现loading条,在处理完成后loading条消失。 具体代码 布局 & 逻辑 import {useRef, useState} from …

【IC设计】Verilog线性序列机点灯案例(二)(小梅哥课程)

文章目录 该系列目录:设计目标设计思路RTL 及 Testbench仿真结果存在的问题?改善后的代码RTL代码testbench代码 仿真结果 案例和代码来自小梅哥课程,本人仅对知识点做做笔记,如有学习需要请支持官方正版。 该系列目录:…

javaEE——线程的等待和结束

文章目录 Thread 类及常见方法启动一个线程中断一个线程变量型中断调用 interrupt() 方法来通知观察标志位是否被清除 等待一个线程获取当前线程引用休眠当前线程 线程的状态观察线程的所有状态观察 1: 关注 NEW 、 RUNNABLE 、 TERMINATED 状态的切换 多线程带来的风险为什么会…

Ubuntu 14.04:安装 PaddleOCR 2.3

目录 一、说明 1.1 如何选择版本 1.2 查看 github 中的 PaddleOCR 版本 二、安装 2.1 安装前环境准备 2.2 下载包 2.3 解压 2.4 安装依赖库 异常处理:Read timed out. 2.5 下载推理模型:inference 2.5.1 模型存放位置 2.5.2 模型下载链接 2.5.…

【5G NB-IoT NTN】3GPP R17 NB-IoT NTN介绍

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

​​SQLiteC/C++接口详细介绍之sqlite3类(十)

返回目录:SQLite—免费开源数据库系列文章目录 上一篇:SQLiteC/C接口详细介绍之sqlite3类(九) 下一篇:​​SQLiteC/C接口详细介绍之sqlite3类(十一) 30.sqlite3_enable_load_extension&#x…

Docker 学习笔记一

一、什么是docker Docker 是一个基于轻量级虚拟化技术的容器,整个项目基于Go语言开发;Docker是一个C/S架构,后端众多模块各司其职,docker的daemon是运行在主机上通过client可以进行通信。 docker 由三部分组成:镜像(…

读算法的陷阱:超级平台、算法垄断与场景欺骗笔记12_移动平台(上)

1. 广告 1.1. 广告收入的来源 1.1.1. 向客户推荐广告投放网址 1.1.2. 提供有效提高产品广告点击率的咨询服务 1.1.3. 从合作伙伴的广告收入中捞上一笔 1.2. 对于广告主来讲,他们无意于与各家网站逐一谈判 1.2.1. 这种方式一是成本过高,二是费时费力…

C#控制台贪吃蛇

Console.Write("");// 第一次生成食物位置 // 随机生成一个食物的位置 // 食物生成完成后判断食物生成的位置与现在的蛇的身体或者障碍物有冲突 // 食物的位置与蛇的身体或者障碍物冲突了,那么一直重新生成食物,直到生成不冲突…

算法——前缀和之除自身以外数组的乘积、和为K的子数组、和可被K整除的子数组、连续数组、矩阵区域和

这几道题对于我们前面讲过的一维、二维前缀和进行了运用,包含了面对特殊情况的反操作 目录 4.除自身以外数组的乘积 4.1解析 4.2题解 5.和为K的子数组 5.1解析 5.2题解 6.和可被K整除的子数组 6.1解析 6.2题解 7.连续数组 7.1题解 7.2题解 8.矩阵区域和 8.1解析 …

在pharmit里匹配药效团

我把400个无活性的小分子(decoys)提交到pharmit里。 命名为decoyset00~decoyset08,查找时,按这个找。 1、导入药效团配体: 进入药效团筛选界面: 导入代表药效团模型的活性肽构象: 2、选择预先…

搞机笔记 MI8 dipper

刷回MIUI 之前刷了 lineage-19.1-20220728-nightly-dipper-signed 基于安卓12,实现了以下功能 TWRPmagisk & ROOTmicroG 退回MIUI的原因有: lineage 墓碑 管不住APP后台,太卡了MIUI提供了3GB的虚拟内存lineage 不支持人脸识别lineag…

【基础CSS】

本文章属于学习笔记&#xff0c;在https://www.freecodecamp.org/chinese/learn/2022/responsive-web-design/中练习 二、 CSS 样式&#xff0c;新建一个文件.css&#xff0c;该文件不含有style标签 <style>. h1&#xff0c;h2&#xff0c;p{ text-align&#xff1a;ce…

[长城杯 2021 院校组]funny_js

[长城杯 2021 院校组]funny_js 审题 根据题名提示为js&#xff0c;再在ida中查看&#xff0c;基本可以确定为quickjs题 QuickJS 是一个快速、灵活且易于嵌入的 JavaScript 引擎&#xff0c;适用于需要在资源受限环境下运行 JavaScript 代码的场景。 工具准备 来到Linux&…

Linux学习方法-框架学习法——Linux系统框架

配套视频学习链接&#xff1a;https://www.bilibili.com/video/BV1HE411w7by?p2&vd_sourced488bc722b90657aaa06a1e8647eddfc 目录 Linux系统框架(从裸机到OS) Linux可看成是一个大软件/大程序 应用和驱动 内核态和用户态 Linux的文件系统 Linux初学者首先要搞清楚三…

第二门课:改善深层神经网络<超参数调试、正则化及优化>-超参数调试、Batch正则化和程序框架

文章目录 1 调试处理2 为超参数选择合适的范围3 超参数调试的实践4 归一化网络的激活函数5 将Batch Norm拟合进神经网络6 Batch Norm为什么会奏效&#xff1f;7 测试时的Batch Norm8 SoftMax回归9 训练一个SoftMax分类器10 深度学习框架11 TensorFlow 1 调试处理 需要调试的参…

单片机第四季-第一课:RTOS

1&#xff0c;RTOS来龙去脉 操作系统是什么&#xff1f; 以人类社会类比&#xff0c;小公司三四个人都是干活的&#xff0c;大公司有几万人其中有几千人从事管理工作&#xff0c;他们的工作是让其他人的干活效率更高。 51单片机为什么没有操作系统&#xff0c;因为51的性能太…