条件队列大法好:wait和notify的基本语义

news2024/12/29 9:04:24

条件队列是我们常用的轻量级同步机制,也被称为“wait+notify”机制。但很多刚刚接触并发的朋友可能会对wait和notify的语义和配合过程感到迷惑。

今天从join()方法的实现切入,重点讲解wait()方法的语义,简略提及notify()与notifyAll()的语义,最后总结二者的配合过程。

本篇的知识点很浅,但牢固掌握很重要。后面会再写一篇文章,介绍wait+nofity的用法,和使用时的一些问题。

基本概念

线程、Thread与Object

在理解“wait+notify”机制时,注意区分线程、Thread与Object的概念,明确三者在wait、 notify、锁竞争等事件中充当的角色:

  • 线程指操作系统中的线程

  • Thread指Java中的线程类

  • Object指Java中的对象

Thread继承自Object,也是一个对象(多态),并从Object类中继承得到了wait()、notify()(还有notifyAll())方法;同时,Thread也被JVM用于映射操作系统中的线程。

wait()

迷惑的join()方法

通过join()方法确认你是否理解了wait+notify机制:

Thread f = new Thread(new Runnable() {
  @Overide
  public run() {
    Thread s = new Thread(new Runnable() {
      @Overide
      public run() {
        for (int i : 1000000) {
          sout(i);
        }
      }
    });
    s.start();
    sout("************* son thread started *************");
    s.join();
    sout("************* son thread died *************");
  }
});
f.start();

join()方法的语义很简单,可以不严谨的表述为“让父线程等待子线程退出”。现在我们来观察Thread#join()的实现,让你对这个语义产生迷惑:

public final synchronized void join(long millis)
throws InterruptedException {
    long base = System.currentTimeMillis();
    long now = 0;

    if (millis < 0) {
        throw new IllegalArgumentException("timeout value is negative");
    }

    if (millis == 0) {
        while (isAlive()) {
            wait(0);
        }
    } else {
        while (isAlive()) {
            long delay = millis - now;
            if (delay <= 0) {
                break;
            }
            wait(delay);
            now = System.currentTimeMillis() - base;
        }
    }
}

重点看15-22行。逻辑很简单,一个限时阻塞的经典写法。不过,你可能会产生和我一样的迷惑:

为什么调用子线程的wait()方法,进入等待状态的却是父线程呢?

分析

让我们用前面提到的线程、Thread和Object三个概念来解释这段代码。事件序列如下:

  1. 主线程t0执行1-17行,在Java中创建了Thread实例f,处于NEW状态;同时,f也是一个Object实例

  • 主线程t0执行18行后,操作系统中创建了线程t1,Thread实例f转入RUNNABLE状态(Java中,Thread没有RUN状态,因为线程是否正在执行由JVM之外的调度策略决定)

  • 假设线程t1正在执行,则线程t1执行4-11行,在Java中创建了Thread实例s,处于NEW状态;同时,s也是一个Object实例

  • 线程t1执行12行后,操作系统中创建了线程t2,Thread实例s转入RUNNABLE状态

  • 假设线程t1、t2均正在执行,则线程t1执行12行之后、14行之前,可能线程t1与线程t2同时在向标准输出打印内容(t1执行13行,t2执行7-9行)

  • 线程t1执行14行的过程中,操作系统中的线程t1转入阻塞或等待状态(取决于操作系统的实现),Thread实例f转入TIMED_WAITING状态Thread实例s不受影响,仍处于RUNNABLE状态

  • 线程t2死亡后,被操作系统标记为死亡,Thread实例s转入为TERMINATED状态

  • 线程t1中,Thread实例f发现Thread实例s不再存活,随即转入RUNNABLE状态,操作系统中的线程t1转入运行状态

  • 线程t1从14行s.join()返回,执行15行,打印

  • 最后,线程t1死亡,Thread实例也转入了TERMINATED状态

当然,在事件6(线程t1执行14行的过程中),Thread实例f在TIMED_WAITING状态与RUNNABLE状态之间来回转换,也因此,才能发现Thread实例s不再存活。但可忽略RUNNABLE状态,不影响理解。

上一节提出的问题忽略了线程、Thread与Object的区别。现在,耐心分析过事件序列之后,让我们使用这三个概念,重新表述该问题:

为什么在父线程t1中调用s.join(),进而调用s.wait(),进入等待状态的却是Thread实例f对应的父线程t1,而不是子线程t2呢?

该表述同时也是回答。因为wait()影响的是调用wait()的线程,而不是wait()所属的Object实例。具体说,wait()的语义是“将调用s.wait()的线程t1放入Object实例s的等待集合”。这与s是否同时是Thread实例并无关系——如果s恰好是一个Thread实例,那么其所对应的线程t2可以照常运行,毫无影响。

虽然线程的状态与Thread实例的状态不能一一对应,但用Thread实例的状态代替线程的状态,可以简化条件队列的模型,又不影响核心的正确性。在事件6(线程t1执行14行的过程中)中,各角色的关系如图:

图片

wait+notify的配合过程-2

更容易理解的用法

我们之所以会在join()方法的实现上产生困惑,是因为它以一种难以理解的姿势使用wait+notify机制。

wait+notify机制本质上是一种基于条件队列的同步。JVM为每个对象都内置了监视器,与java.util.concurrent包中的条件队列Condition对应。

条件队列本身很容易理解,但join()方法使用wait()的姿势让人迷惑。它将Thread实例s作为条件队列,共享于父线程t1、子线程t2中——Thread实例s既能够被创建它的Thread实例f访问,也能够被它自己(this)访问。可读性很差,不建议学习。

那么,如何使用wait()才更容易理解呢?可参考Java实现生产者-消费者模型中的“实现二:wait && notify”,使用明确可读的条件队列。简化如下:

public class WaitNotifyModel implements Model {
  private final Object BUFFER_LOCK = new Object();
...
  private class ConsumerImpl extends AbstractConsumer implements Consumer, Runnable {
    @Override
    public void consume() throws InterruptedException {
      synchronized (BUFFER_LOCK) {
        while (buffer.size() == 0) {
          BUFFER_LOCK.wait();
        }
        Task task = buffer.poll();
        assert task != null;
        System.out.println("consume: " + task.no);
        BUFFER_LOCK.notifyAll();
      }
    }
  }

  private class ProducerImpl extends AbstractProducer implements Producer, Runnable {
    @Override
    public void produce() throws InterruptedException {
      synchronized (BUFFER_LOCK) {
        while (buffer.size() == cap) {
          BUFFER_LOCK.wait();
        }
        Task task = new Task(increTaskNo.getAndIncrement());
        buffer.offer(task);
        System.out.println("produce: " + task.no);
        BUFFER_LOCK.notifyAll();
      }
    }
  }
...
}

BUFFER_LOCK即是内置的条件队列。所有生产者线程和消费者线程都共享BUFFER_LOCK,通过BUFFER_LOCK的wait+notify机制实现同步。

  • notify()和notifyAll()接下来讲。

  • 之所以命名为BUFFER_LOCK,是因为同时还要在将BUFFER_LOCK作为内置锁来使用。命名为BUFFER_LOCKBUFFER_COND都是可接受的。

notify()与notifyAll()

可以认为notify与wait是对偶的。s.wait()将当前线程c放入Object实例s的等待集合中,s.notify()随机将一个线程t从s的等待集合中取出来(也可能不是随机的,这取决于操作系统的实现。但很明显JVM的使用者不应该依赖其是否随机)。如果s的等待集合中有多个线程,那么t可能是刚才放入的线程c,也可能是其他线程。

虽然我们通常说“wait+notify”机制,但是使用更多的是notifyAll()而不是notify()。因为notify()只能唤醒一个线程,并且通常是随机的——而被唤醒线程所等待的条件不一定已经被满足(因为多个条件可以使用同一个条件队列),从而会再次进入等待状态;真正满足了条件的线程却因为没被选中而继续等待。这类似于“信号丢失”,可以称为信号劫持

notifyAll()则一次唤醒全部等待在该条件队列上的线程。虽然notifyAll()解决了“信号劫持”的问题,但一次性唤醒全部线程去竞争锁,也大大加剧了无效竞争

关于notify()与notifyAll()的自问自答

如何同时解决信号劫持与无效竞争?

不过,只要保证notify()每次都能叫醒正确的人,就能在解决信号劫持的前提下,避免无效竞争。方法很简单,禁止不同类型的线程共用条件队列

  • 一个条件队列只用来维护一个条件

  • 每个线程被唤醒后执行的操作相同

使用join()方法的过程中,没有任何线程调用notify()或notifyAll(),如何唤醒线程t1?

为了方便理解,前面事件8(线程t1中,Thread实例f发现Thread实例s不再存活)采用了不正确的描述。在事件8之前,线程t1已经处于阻塞状态,从而Thread实例f无法发现s是否不再存活。那么,使用join()方法的过程中,没有任何线程调用notify()或notifyAll(),如何唤醒线程t1?

**在线程t1死亡的时候,JVM会帮忙调用s.notifyAll()**(或非正常死亡时抛出InterruptedException),以唤醒线程t1;t1中做判断,发现s不再存活,便能够正常只是后面的逻辑。

这是必要的。假设JVM不会帮忙(调用s.notifyAll()或抛出InterruptedException),在最坏的情况下,如果线程t1被用户从操作系统中强制杀死,那么在条件队列s上等待的主线程t0将永远阻塞,而不知道此时发生的异常情况。

同时,这种帮助在JVM规范下没有副作用。因为JVM要求用户从wait()方法返回后检查条件是否得到满足。如果用户编写了错误的同步逻辑,使得线程t2正常执行结束后,条件仍不能得到满足,那么虽然JVM的“帮助”使得线程t1提前唤醒,但wait()返回后的检查使线程t1再次进入阻塞状态,符合用户编写的同步逻辑(尽管是错误的)。另一方面,如果没有线程等待条件队列,那么notify也不会做任何事。

wait+notify的配合过程

仍然用Thread实例的状态代替线程的状态。

1. 调用wait()前

调用wait()前,线程t1对应的Thread实例f、t2对应的s都处于RUNNABLE状态:

图片

wait+notify的配合过程-1

2. 调用wait()后,调用notify()前

在线程t1中调用s.wait()后,其他线程调用s.notify()前,t1对应的f转入WAITING状态,进入对象s的等待队列(即,条件队列);s不受影响,仍处于RUNNABLE状态:

图片

wait+notify的配合过程-2

3. 调用notify()后

假设在主线程t0中主动调用s.notify(),那么在此之后,线程t1对应的Thread实例f转入RUNNABLE状态;s仍然不受影响:

图片

原文地址: 条件队列大法好:wait和notify的基本语义

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1521862.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu安装docker的详细教程

检查卸载老版本docker ubuntu下自带了docker的库,不需要添加新的源。 但是ubuntu自带的docker版本太低,需要先卸载旧的再安装新的。 注:docker的旧版本不一定被称为docker,docker.io 或 docker-engine也有可能,所以卸载的命令为: sudo apt-get remove -y docker docke…

记录工作中莫名其妙的bug

1、问题&#xff1a;办公室的电脑突然除了我之外&#xff0c;都不能访问我们的线上系统了 原因&#xff1a;因为是内网&#xff0c;同事有刚刚升级了Windows11&#xff0c;配置的DNS被清了&#xff0c;还有同事换了公司的新电脑&#xff0c;还没有配DNS 位于&#xff1a;C /Win…

JVM虚拟机:通过jconsole远程连接解决JVM报错

本文重点 前面我们介绍过的一些工具都是使用命令行的方式来帮助我们完成&#xff0c;本文我们将使用一种图形化界面的方式来远程连接&#xff0c;然后完成关于JVM的检测任务。 jconsole jconsole是一个JVM的检测工具&#xff0c;这个工具任何安装了Java的电脑上都有的&#…

亚信安慧AntDB:简化开发与运维

AntDB将SQL作为唯一语法&#xff0c;不仅简化了开发运维&#xff0c;更提高了数据库的易用性。这种统一的语法规范让开发人员在编写和优化复杂的查询时更加得心应手&#xff0c;极大地提高了工作效率。随着数据库系统的不断发展&#xff0c;AntDB的独特设计理念使得用户可以更加…

三连杆滑块机构运动学仿真 | 【Matlab源码+理论公式文本】

【程序简介】&#x1f4bb;&#x1f50d; 本程序通过matlab实现了三连杆滑块机构的运动学仿真编程&#xff0c;动态展现了三连杆机构的运动动画&#xff0c;同时给出了角位移、角速度和角加速度的时程曲线&#xff0c;除了程序本身&#xff0c;还提供了机构运动学公式推导文档…

Centos7安装Clickhouse单节点部署

&#x1f388; 作者&#xff1a;互联网-小啊宇 &#x1f388; 简介&#xff1a; CSDN 运维领域创作者、阿里云专家博主。目前从事 Kubernetes运维相关工作&#xff0c;擅长Linux系统运维、开源监控软件维护、Kubernetes容器技术、CI/CD持续集成、自动化运维、开源软件部署维护…

【力扣白嫖日记】1934.确认率

前言 练习sql语句&#xff0c;所有题目来自于力扣&#xff08;https://leetcode.cn/problemset/database/&#xff09;的免费数据库练习题。 今日题目&#xff1a; 1934.确认率 表&#xff1a;Signups 列名类型user_idinttime_stampdatetime User_id是该表的主键。每一行都…

线性回归 quickstart

构建一元一次方程 100个&#xff08;X, y &#xff09;&#xff0c;大概是’y3x4’ import numpy as npnp.random.seed(42) # to make this code example reproducible m 100 # number of instances X 2 * np.random.rand(m, 1) # column vector y 4 3 * X np.random…

4.10.CVAT——3D对象标注

文章目录 1. 创建任务2. 3D 任务工作区3.标准 3D 模式 Standard 3D mode4. 用长方体进行注释4.1. 用shapes进行注释4.2. 使用长方体进行跟踪Tracking 使用 3D 注释工具来标记 3D 对象和场景&#xff0c;例如车辆、建筑物、景观等。 1. 创建任务 要创建 3D 任务&#xff0c;您必…

PS学习-抠图-蒙版-冰块酒杯等透明物体

选中图&#xff0c;ctrlA 全选 ctrlC复制 创建一个蒙版图层 选中蒙版Alt 点击进入 ctrlv 复制 ctrli 反转 原图层 ctrldelete填充为白色 添加一个背景&#xff0c;这个方法通用 首选创建一个 拖到最底部 给它填充颜色 这个可能是我图片的原因。视频是这样做的

《古滇传说水龙吟》敖诀扮演者李亚云

2024年2月28日&#xff0c;演员李亚云参演新剧古滇传说原创系列剧第一部《水龙吟》在浙江横店影视城开机拍摄。该剧由中共昆明市西山区委宣传部、石林县委宣传部、昆明滇池国家旅游度假区管委会文旅投促局、云南民族电影制片厂、云南卫视、昆明影视拍摄服务中心支持&#xff0c…

8:00面试,8:06就出来了,问的问题有点变态。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到9月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%…

BMP280 arduino调试

终于成功了。 #include <SPI.h> //定义数据类型 #define s32_t long signed int #define u32_t long unsigned int #define u16_t unsigned short #define s16_t signed short // 定义从设备选择引脚 const int chipSelectPin 10; //定义BMP280寄存器/// unsigned int …

Java面向对象案例之描述专业和学生(4)

类的方法图 学生类&#xff1a; 属性&#xff1a;学号&#xff0c;姓名&#xff0c;年龄&#xff0c;所学习的专业方法&#xff1a;学习的方法&#xff0c;描述学习状态。描述内容包括姓名、学号、年龄、所学习的专业信息 专业类&#xff1a; 属性&#xff1a;专业编号&#xf…

【Poi-tl Documentation】自定义行删除标签

前置说明&#xff1a; <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.12.1</version> </dependency>模板样式&#xff1a; 删除行表格测试.docx 实现思路&#xff1a;通过定制占位…

监视和内存观察

监视和内存观察 5.监视和内存观察5.1 监视5.2 内存 5.监视和内存观察 在调试的过程中我们&#xff0c;如果要观察代码执行过程中&#xff0c;上下文环境中的变量的值&#xff0c;有哪些方法呢&#xff1f; 这些观察的前提条件一定是开始调试后观察&#xff0c;比如&#xff1…

【深度学习模型移植】用torch普通算子组合替代torch.einsum方法

首先不得不佩服大模型的强大之处&#xff0c;在算法移植过程中遇到einsum算子在ONNX中不支持&#xff0c;因此需要使用普通算子替代。参考TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法。可以写出简单的替换方法&#xff0c;但是该方法会…

AI健身教练-引体向上-俯卧撑计数-仰卧起坐姿态估计-康复训练姿态识别-姿态矫正

在AI健身应用中&#xff0c;通过关键点检测技术可以实现对用户动作的精准捕捉和分析&#xff0c;从而进行统计计数和规范性姿态识别。 统计计数&#xff1a;比如在做瑜伽、健身操等运动时&#xff0c;系统可以通过对人体关键点&#xff08;如手部、脚部、关节等&#xff09;的…

MySQL语法分类 DQL(4)聚合函数

为了更好的学习这里给出基本表数据用于查询操作 create table student (id int, name varchar(20), age int, sex varchar(5),address varchar(100),math int,english int );insert into student (id,name,age,sex,address,math,english) values (1,马云,55,男,杭州,66,78),…

GPT实战系列-LangChain构建自定义Agent

GPT实战系列-LangChain构建自定义Agent LangChain GPT实战系列-LangChain如何构建基通义千问的多工具链 GPT实战系列-构建多参数的自定义LangChain工具 GPT实战系列-通过Basetool构建自定义LangChain工具方法 GPT实战系列-一种构建LangChain自定义Tool工具的简单方法 GPT…