无人机助力智慧农田除草新模式,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下的农田杂草检测识别系统

news2025/1/13 17:57:19

科技发展到今天,无人机喷洒药物已经不是一件新鲜事情了,在很多高危的工作领域中,比如高空电力设备除冰,电力设备部件传送更换等等,无人机都可以扮演非常出色的作用,前面回到老家一段时间,最近正值农田小麦施药的计算,小片的麦田大都还是一家一户几个人背着一个喷雾器然后在地里面人工喷药,大片的麦田近些年来已经逐渐有了机械化规模化的意思, 无人机设定路线配置药水一键启动喷药即可,非常高效快捷,传统的这种施药模式就好比是十几年前甚至几十年前的浇地模式一样,大都采用的是大水漫灌的形式,效率低且资源浪费严重,如果遇上水资源匮乏的情况就更加明显了,结合回老家看到的景象突然有个想法就是未来的农药喷灌模式是否可以跟浇地模式的改变学一下吗?传统的大水漫灌改成了喷头式的喷灌,那么无人机广撒网的全覆盖模式能够结合AI技术变成智能化“点喷”?我觉得这个在未来发展一定是能有作为的赛道。

也就是基于这个想法专门找科技发烧友们借来了无人机,在实验农田上面航拍来采集我所需要的数据集,本文也就是想要实践这个想法,当然了这里主要是偏重于软件模型的开发,没有涉及到硬件无人机结合的部分(因为我也没有啊),话不多说,这里先看实例效果:

接下来看下我无人机航拍实地采集的数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另一套预训练模型权重地址如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里给出yolov8的模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

实验阶段保持着完全相同的参数设置,开发完成五款不同参数量级的模型来进行综合全面的对比分析,等待训练完成后我们来详细看下结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【loss】

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

综合五款不同参数量级模型的实验对比结果来看,n系列的模型最终效果最差被拉开了明显的差距,而其余四款模型则达到了十分相近的水准,最终我结合参数量综合考虑选择了使用s系列的模型作为线上的最终推理模型。

接下来看下s系列的模型详情:
【离线推理实例】

【热力图可视化】

【Batch实例】

【训练可视化】

【PR曲线】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1520791.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

内网渗透之路:常用命令助力信息深度探索

1、查询网络配置信息 ipconfig /all 2、查询操作系统及软件信息 (1)查询操作系统和版本信息 英文操作系统 systeminfo | findstr /B /C:"OS Name" /C:"OS Version" 中文操作系统 systeminfo | findstr /B /C:"OS 名称&q…

【C#】int+null=null

C#语法,这玩意不报错 intnullnull,有点不合逻辑 (Int32)(bizRepair0rder.CreateTime. Value - regues.Mlodifylime.Value).TotalMinutes (Int32)(bizRepair0rder.CreateTime. Value - reques.llodifylime.Value).TotalMinutes nullstring是引用类型&…

【C#】【SAP2000】读取SAP2000中所有Frame对象在指定工况的温度荷载值到Grasshopper中

if (build true) {// 连接到正在运行的 SAP2000// 使用 COM 接口获取 SAP2000 的 API 对象cOAPI mySapObject (cOAPI)System.Runtime.InteropServices.Marshal.GetActiveObject("CSI.SAP2000.API.SapObject");// 获取 SAP2000 模型对象cSapModel mySapModel mySap…

PlantUML + VS Code

PlantUML 使用实例 文章目录 PlantUML 使用实例1. PlantUML简介1.1 什么是PlantUML1.2 PlantUML优势在哪 2. 怎么用2.1 环境依赖2.2 VS Code组件安装 3. 常用语法3.1 标记开始结束3.2 声明参与者3.3 声明关系3.4 对消息序列编号3.5 组合消息 4. 实例 1. PlantUML简介 1.1 什么…

NCDA大赛中哪些HTML5设计作品展现出色?

与传统的HTML网页设计相比,HTML5网页设计主要是对网页内容的加强。HTML5已成为目前最流行的标记语言,拥有成熟的社区和广泛的浏览器支持,HTML5完整的功能和强大的扩展性使设计师和开发者能够点铁成金。HTML5可以一手控制更多可控元素&#xf…

HDS-NAS分配资源并挂载win和linux

1、首先创建系统文件。 选择nas存储池 2、根据自己的需求创建相应的挂载方式 3、window配置 配置成功 最后即可在window系统网络位置映射网络即可, 格式为\\123.3.4.5\test 注:IP地址 4、liunx挂载方式 创建完成之后即可挂载,注意目的主…

Vue+OpenLayers7入门到实战:OpenLayers如何使用全屏控件,来实现地图容器的全屏和退出全屏功能

返回《Vue+OpenLayers7》专栏目录:Vue+OpenLayers7入门到实战 前言 本章介绍如何使用OpenLayers7在地图上使用地图全屏控件,来控制地图容器的全屏和退出全屏的功能。 注意:这里的全屏控件全屏指的是地图容器全屏,并非整个网页全屏。 网页整体全屏和指定网页节点全屏可以参…

FreeRTOS的学习路径介绍

FreeRTOS是一种广泛使用的开源实时操作系统(RTOS),它被设计为一个小型、可扩展的操作系统,适用于微控制器和嵌入式系统。由于其轻量级和可扩展性,FreeRTOS被广泛应用于物联网(IoT)、工业自动化、…

简单了解 vim 编辑器最基础的操作

简单了解 vim 编辑器最基础的操作 vim 这个是 Linux 上自带的一个文本编辑器,使用 vim 就可以更灵活的对文件进行编辑了(虽然和记事本的定位差不多,实际上vim的使用要复杂很多) 1.打开文件 语法:vim 文件名 示例:…

mysql 排序底层原理解析

前言 本章详细讲下排序,排序在我们业务开发非常常见,有对时间进行排序,又对城市进行排序的。不合适的排序,将对系统是灾难性的,这个不是危言耸听。可能有些人会想,对于排序mysql 是怎么实现的,…

【计算机网络篇】计算机网络的性能指标

文章目录 🍔计算机网络的性能指标🗃️常见的计算机网络性能指标⭐速率⭐带宽⭐吞吐量⭐时延⭐时延带宽积⭐往返时间⭐利用率⭐丢包率 🔎总结 🍔计算机网络的性能指标 计算机网络的性能指标被用来从不同方面度量计算机网络的性能 …

02-Java变量和运算符

1. 基本数据类型转换(Conversion) 在Java程序中,不同的基本数据类型的值经常需要进行相互转换。Java语言所提供的七种数值类型之间可以相互转换,基本数据类型转换有两种转换方式:自动类型转换和强制类型转换。boolean…

江科大stm32学习笔记【6-2】——定时器定时中断定时器外部时钟

一.定时器定时中断 1.原理 2.硬件 3.程序 此时CK_PSC72M,定时1s,也就是定时频率为1Hz,所以可以PSC7200-1,ARR10000-1。 Timer.c: #include "stm32f10x.h" // Device headerextern uint16_t Num;//声明跨文件的…

Python爬虫:原理与实战

引言 在当今的信息时代,互联网上的数据如同浩瀚的海洋,充满了无尽的宝藏。Python爬虫作为一种高效的数据抓取工具,能够帮助我们轻松地获取这些数据,并进行后续的分析和处理。本文将深入探讨Python爬虫的原理,并结合实战…

中国首个基于区块链的分布式算力网络上线

随着美国人工智能公司OpenAI近期发布的Sora视频模型,全球对高性能算力的需求突破了历史新高。Sora的创新在于它能够以超长生成时间、多角度镜头捕捉,理解物理世界的能力,这不仅是技术的一大突破,更是对算力需求的一大挑战。在这样…

VS2022开发上位机流程

1、生成串口调试助手的主要控件 2、生成串口对象 3、书写代码 3.1 串口的选择 跳转到图形化界面,然后双击空白位置,会自动生成From1_Load,此函数的作用是会更新串口的选择,然后加入代码,combox控件就可以识别串口 /* 新增自定义…

微信小程序云开发教程——墨刀原型工具入门(表单组件)

引言 作为一个小白,小北要怎么在短时间内快速学会微信小程序原型设计? “时间紧,任务重”,这意味着学习时必须把握微信小程序原型设计中的重点、难点,而非面面俱到。 要在短时间内理解、掌握一个工具的使用&#xf…

deepin23beta中SQLite3数据库安装与使用

SQLite 是一个嵌入式 SQL 数据库引擎,它实现了一个自包含、无服务器、零配置、事务性 SQL 数据库引擎。 SQLite 的代码属于公共领域,因此可以免费用于任何商业或私人目的。 SQLite 是世界上部署最广泛的数据库,其应用程序数量之多&#xff0c…

编译原理-实现识别标识符的词法分析器——沐雨先生

实验任务: 实现识别标识符的词法分析器 实验要求: 根据编译原理理论课教材中图2.3“标识符的转换图”,用C语言编写识别标识符的词法分析器,以文本文件为输入,控制台(或文件)输出识别出的每个…

别忽视平台的重要性

目录 前言: 与谁在一起,真的很重要 别把运气当才华,别把平台当本事 珍惜平台,用好平台 前言: 对于做技术开发的人来说,一头扎进技术里面去固然重要,但是很多时候,也要看看人际交…