说明:STM32CubeMX 配置 STM32F103 工程,通过DAC输出正弦波,参考代码可自动计算频率,自动计算正弦数据。
先参考这篇文章配置时钟、工程输出的设置:
STM32CubeMX 配置 STM32F103 工程:通过DAC生成三角波、噪声-CSDN博客
1.配置DAC
2.配置DMA
3.配置DAC的触发TIM
4.输出设置
5.生成代码
6.打开工程
7.正弦数据生成代码
#if 0
//正弦信号
#define POINTS 256
#define SCALE_FACTOR (4095.0 / 2) // 缩放因子,将[-1, 1]映射到[0, 4095]
#define OFFSET 2048 // 偏移量,将[0, 4095]调整到中心
#define M_PI 3.14159265
uint16_t sine_wave_u16[POINTS];
int sine_wave[POINTS];
void sina(void)
{
for (int i = 0; i < POINTS; i++)
{
double x = ((double) i / (POINTS - 1)) * 2 * M_PI; // 0到2π之间的值
double sin_value = sin(x); // 计算正弦值
sine_wave[i] = (int) (SCALE_FACTOR * sin_value + OFFSET); // 缩放和平移正弦值到0~4095范围
sine_wave_u16[i] = (uint16_t)sine_wave[i];
}
}
#else
#define POINTS 256 //正弦数据点数
#define MIN_VALUE 100 //正弦数据最小值
#define MAX_VALUE 4000 //正弦数据最大值
#define SCALE ((MAX_VALUE - MIN_VALUE) / 2.0)
#define OFFSET MIN_VALUE
#define M_PI 3.14159265
uint16_t sine_wave_u16[POINTS];
int sine_wave[POINTS];
void sina(void)
{
for (int i = 0; i < POINTS; i++)
{
double x = ((double)i / (POINTS - 1)) * 2 * M_PI; // 将索引转换为0到2π之间的值
double sin_value = sin(x); // 计算正弦值
sine_wave[i] = (int)((sin_value + 1) * SCALE + OFFSET); // 缩放和平移正弦值到100~4000范围
sine_wave_u16[i] = (uint16_t)sine_wave[i];
}
}
#endif
8.在main.c函数中添加定时器、DAC启动代码
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dac.h"
#include "dma.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "math.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t sin_data_updata = 0;
#if 0
//正弦信号
#define POINTS 256
#define SCALE_FACTOR (4095.0 / 2) // 缩放因子,将[-1, 1]映射到[0, 4095]
#define OFFSET 2048 // 偏移量,将[0, 4095]调整到中心
#define M_PI 3.14159265
uint16_t sine_wave_u16[POINTS];
int sine_wave[POINTS];
void sina(void)
{
for (int i = 0; i < POINTS; i++)
{
double x = ((double) i / (POINTS - 1)) * 2 * M_PI; // 0到2π之间的值
double sin_value = sin(x); // 计算正弦值
sine_wave[i] = (int) (SCALE_FACTOR * sin_value + OFFSET); // 缩放和平移正弦值到0~4095范围
sine_wave_u16[i] = (uint16_t)sine_wave[i];
}
}
#else
#define POINTS 256 //正弦数据点数
#define MIN_VALUE 100 //正弦数据最小值
#define MAX_VALUE 4000 //正弦数据最大值
#define SCALE ((MAX_VALUE - MIN_VALUE) / 2.0)
#define OFFSET MIN_VALUE
#define M_PI 3.14159265
uint16_t sine_wave_u16[POINTS];
int sine_wave[POINTS];
void sina(void)
{
for (int i = 0; i < POINTS; i++)
{
double x = ((double)i / (POINTS - 1)) * 2 * M_PI; // 将索引转换为0到2π之间的值
double sin_value = sin(x); // 计算正弦值
sine_wave[i] = (int)((sin_value + 1) * SCALE + OFFSET); // 缩放和平移正弦值到100~4000范围
sine_wave_u16[i] = (uint16_t)sine_wave[i];
}
}
#endif
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_DAC_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
sina(); //正选信号数据初始化
HAL_TIM_Base_Start(&htim2);
//HAL_DAC_Start(&hdac,DAC_CHANNEL_1);
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t *)sine_wave_u16, POINTS, DAC_ALIGN_12B_R);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
if(sin_data_updata)
{
sina();
}
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
9.TIM文件中添加频率自动计算代码
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file tim.c
* @brief This file provides code for the configuration
* of the TIM instances.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "tim.h"
/* USER CODE BEGIN 0 */
uint16_t user_hz = 1000; //用户自定义频率 单位:hz
uint16_t get_Period(uint16_t hz) //定时器 Period 计算
{
return (72000000/(256*hz) - 1);
}
/* USER CODE END 0 */
TIM_HandleTypeDef htim2;
/* TIM2 init function */
void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
uint16_t user_Period = get_Period(user_hz);
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = user_Period;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{
if(tim_baseHandle->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
/* USER CODE END TIM2_MspInit 0 */
/* TIM2 clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */
/* USER CODE END TIM2_MspInit 1 */
}
}
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
{
if(tim_baseHandle->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
/* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */