单细胞Seurat - 降维与细胞标记(4)

news2024/12/29 16:46:18

本系列持续更新Seurat单细胞分析教程,欢迎关注!

非线形降维

Seurat 提供了几种非线性降维技术,例如 tSNE 和 UMAP,来可视化和探索这些数据集。这些算法的目标是学习数据集中的底层结构,以便将相似的细胞放在低维空间中。因此,在上面确定的基于图的簇内分组在一起的细胞应该在这些降维图上共同定位。

虽然和其他人经常发现 tSNE 和 UMAP 等 2D 可视化技术是探索数据集的有价值的工具,但所有可视化技术都有局限性,并且不能完全代表基础数据的复杂性。特别是,这些方法旨在保留数据集中的局部距离(即确保具有非常相似的基因表达谱的细胞共定位),但通常不会保留更多的全局关系。我们鼓励用户利用 UMAP 等技术进行可视化,但避免仅根据可视化技术得出生物学结论。

pbmc <- RunUMAP(pbmc, dims = 1:10)

# note that you can set `label = TRUE` or use the LabelClusters function to help label
# individual clusters
DimPlot(pbmc, reduction = "umap")
alt

您可以在此时保存对象,以便可以轻松地重新加载它,而无需重新运行上面执行的计算密集型步骤,或者轻松地与协作者共享。

寻找差异表达特征(簇生物标志物)

Seurat 可以帮助您找到通过差异表达 (DE) 定义簇的标记。默认情况下,与所有其他细胞相比,它识别单个簇的阳性和阴性标记(在 ident.1 中指定)。 FindAllMarkers() 会针对所有集群自动执行此过程,但您也可以测试集群组之间的对比,或针对所有细胞进行测试。

在 Seurat v5 中,我们使用 presto 软件包来显着提高 DE 分析的速度,特别是对于大型数据集。对于不使用 presto 的用户,您可以查看该函数的文档(?FindMarkers)来探索 min.pct 和 logfc.threshold 参数,可以增加这些参数以提高 DE 测试的速度。

# find all markers of cluster 2
cluster2.markers <- FindMarkers(pbmc, ident.1 = 2)
head(cluster2.markers, n = 5)

##             p_val avg_log2FC pct.1 pct.2    p_val_adj
## IL32 2.593535e-91  1.3221171 0.949 0.466 3.556774e-87
## LTB  7.994465e-87  1.3450377 0.981 0.644 1.096361e-82
## CD3D 3.922451e-70  1.0562099 0.922 0.433 5.379250e-66
## IL7R 1.130870e-66  1.4256944 0.748 0.327 1.550876e-62
## LDHB 4.082189e-65  0.9765875 0.953 0.614 5.598314e-61

# find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(03))
head(cluster5.markers, n = 5)

##                       p_val avg_log2FC pct.1 pct.2     p_val_adj
## FCGR3A        2.150929e-209   6.832372 0.975 0.039 2.949784e-205
## IFITM3        6.103366e-199   6.181000 0.975 0.048 8.370156e-195
## CFD           8.891428e-198   6.052575 0.938 0.037 1.219370e-193
## CD68          2.374425e-194   5.493138 0.926 0.035 3.256286e-190
## RP11-290F20.3 9.308287e-191   6.335402 0.840 0.016 1.276538e-186

# find markers for every cluster compared to all remaining cells, report only the positive
# ones
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE)
pbmc.markers %>%
    group_by(cluster) %>%
    dplyr::filter(avg_log2FC > 1)

## # A tibble: 7,046 × 7
## # Groups:   cluster [9]
##        p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene     
##        <dbl>      <dbl> <dbl> <dbl>     <dbl> <fct>   <chr>    
##  1 1.74e-109       1.19 0.897 0.593 2.39e-105 0       LDHB     
##  2 1.17e- 83       2.37 0.435 0.108 1.60e- 79 0       CCR7     
##  3 8.94e- 79       1.09 0.838 0.403 1.23e- 74 0       CD3D     
##  4 3.05e- 53       1.02 0.722 0.399 4.19e- 49 0       CD3E     
##  5 3.28e- 49       2.10 0.333 0.103 4.50e- 45 0       LEF1     
##  6 6.66e- 49       1.25 0.623 0.358 9.13e- 45 0       NOSIP    
##  7 9.31e- 44       2.02 0.328 0.11  1.28e- 39 0       PRKCQ-AS1
##  8 4.69e- 43       1.53 0.435 0.184 6.43e- 39 0       PIK3IP1  
##  9 1.47e- 39       2.70 0.195 0.04  2.01e- 35 0       FHIT     
## 10 2.44e- 33       1.94 0.262 0.087 3.34e- 29 0       MAL      
## # ℹ 7,036 more rows

Seurat 有几种差异表达测试,可以使用 test.use 参数进行设置。例如,ROC 测试返回任何单个标记的“分类能力”(范围从 0 到 1)。

cluster0.markers <- FindMarkers(pbmc, ident.1 = 0, logfc.threshold = 0.25, test.use = "roc", only.pos = TRUE)

我们提供了几种用于可视化标记表达的工具。 VlnPlot()(显示跨簇的表达概率分布)和 FeaturePlot()(在 tSNE 或 PCA 图上可视化特征表达)是我们最常用的可视化。我们还建议探索 RidgePlot()、CellScatter() 和 DotPlot() 作为查看数据集的附加方法。

VlnPlot(pbmc, features = c("MS4A1""CD79A"))
alt
# you can plot raw counts as well
VlnPlot(pbmc, features = c("NKG7""PF4"), slot = "counts", log = TRUE)
alt
FeaturePlot(pbmc, features = c("MS4A1""GNLY""CD3E""CD14""FCER1A""FCGR3A""LYZ""PPBP",
    "CD8A"))
alt

DoHeatmap() 为给定的细胞和特征生成表达式热图。在本例中,我们绘制每个簇的前 20 个标记(如果少于 20 个则为所有标记)。

pbmc.markers %>%
    group_by(cluster) %>%
    dplyr::filter(avg_log2FC > 1) %>%
    slice_head(n = 10) %>%
    ungroup() -> top10
DoHeatmap(pbmc, features = top10$gene) + NoLegend()
alt

细胞类型分配

在此数据集的情况下,可以使用规范标记轻松地将无偏聚类与已知细胞类型进行匹配:

alt
new.cluster.ids <- c("Naive CD4 T""CD14+ Mono""Memory CD4 T""B""CD8 T""FCGR3A+ Mono",
    "NK""DC""Platelet")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
alt
library(ggplot2)
plot <- DimPlot(pbmc, reduction = "umap", label = TRUE, label.size = 4.5) + xlab("UMAP 1") + ylab("UMAP 2") +
    theme(axis.title = element_text(size = 18), legend.text = element_text(size = 18)) + guides(colour = guide_legend(override.aes = list(size = 10)))
ggsave(filename = "../output/images/pbmc3k_umap.jpg", height = 7, width = 12, plot = plot, quality = 50)

saveRDS(pbmc, file = "../output/pbmc3k_final.rds")

未完待续,持续更新,欢迎关注!

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1484542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript 设计模式之职责链模式

职责链 在日常开发中&#xff0c;我们一个函数&#xff08;方法&#xff09;应该是尽可能的单单只做一件事&#xff0c;比如 一个获取 name 的函数&#xff0c;他就用来返回 name 处理 name相关的数据就好了&#xff0c;这就是职责 function getName(){// todo sth.return na…

从零自制docker-1-【环境配置 docker go介绍与安装】

文章目录 docker简介举例docker安装go语言go安装go 配置 docker简介 Docker可以看作是一种极其轻巧的“虚拟机”&#xff0c;它允许你将一个或多个程序及其运行环境打包在一起&#xff0c;形成一个标准化的单元&#xff0c;这个单元可以在任何支持Docker的系统上运行&#xff…

ArmSoM Rockchip系列产品 通用教程 之 Camera 使用

Camera 使用 1. Camera 简介 ArmSoM系列产品使用的是mipi-csi接口的摄像头 ArmSoM-Sige7支持双摄同显&#xff1a; 2. RK3588硬件通路框图 rk3588支持2个isp硬件&#xff0c;每个isp设备可虚拟出多个虚拟节点&#xff0c;软件上通过回读的方式&#xff0c;依次从ddr读取每…

SQL无列名注入

SQL无列名注入 ​ 前段时间&#xff0c;队里某位大佬发了一个关于sql注入无列名的文章&#xff0c;感觉好像很有用&#xff0c;特地研究下。 关于 information_schema 数据库&#xff1a; ​ 对于这一个库&#xff0c;我所知晓的内容并不多&#xff0c;并且之前总结SQL注入的…

React多个echarts图表在一个页面的使用

前景 很多情况下图标都是一个,我们大概率会像下面代码一样的做法 大概流程就是获取到数据后执行初始化,因为先初始化后异步请求再设置state里面的数据回导致无法正常显示echarts(除非再次调用setOption)下面就记录下自己解决过程源码 https://github.com/superBiuBiuMan/react-…

《秦时明月》IP新高度:与陕西历史博物馆共同书写文化传承新篇章!

在IP产业风起云涌的今天&#xff0c;如何以创意和匠心为传统文化注入新的活力&#xff0c;成为了摆在每一位文化工作者面前的重要课题。近日&#xff0c;《秦时明月》作为一部深受观众喜爱的国产动画IP&#xff0c;在迎来其十七周年之际&#xff0c;联手陕西历史博物馆&#xf…

线性dp:P2679 子串

1.P2679 子串 传送门https://www.luogu.com.cn/problem/P2679这道题是公共子串问题的变种&#xff0c;但是我第一时间确实没想到转移方程&#xff08;写少了&#xff09; 一开始看了题解也没太看懂&#xff0c;直到自己模拟一遍&#xff08;模拟数据便于理解原理&#xff09;…

#WEB前端(HTML属性)

1.实验&#xff1a;a,img 2.IDE&#xff1a;VSCODE 3.记录&#xff1a; a: href插入超链接 默认情况下在本窗口打开链接, target可以设置打开的窗口,parent在父窗口打开&#xff0c;blank新开串口打开,top在顶层串口打开,self为默认在本窗口打开 img: 插入图片 可以插…

持续集成(CICD)- Git版本管理工具,Gitee线上仓库

文章目录 一、学习目标:二、什么是Git工具三 、Git环境搭建(windows系统)四、Gitee设置(私钥和公钥绑定)五、Git结合Gittee进行基本设置(重要)六、在Gitee上新建仓库私有仓库(非空仓库)七、Git拉取线上仓库代码,提交代码(重要)八、Git解决版本冲突问题(重要)场景一…

LeetCode 刷题 [C++] 第45题.跳跃游戏 II

题目描述 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j < nums[i]i j < n 返回到达 nums[n …

YOLOv9独家原创改进|增加SPD-Conv无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、文章摘要 卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而&#xff0c;当图像分辨率较低或物体较小时&…

每日一题 — 复写零

1089. 复写零 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 首先找到最后一个复写的数&#xff1a; 双指针算法&#xff1a; 1、先判断 cur 位置上的值 2、然后决定 dest 移动一步还是两步 3、然后判断 dest 是否到终点了 4、最后 cur 处理越界的情况 arr[n-1] …

Javaweb之SpringBootWeb案例之自动配置的原理分析的详细解析

3.2.3 原理分析 3.2.3.1 源码跟踪 前面我们讲解了在项目当中引入第三方依赖之后&#xff0c;如何加载第三方依赖中定义好的bean对象以及配置类&#xff0c;从而完成自动配置操作。那下面我们通过源码跟踪的形式来剖析下SpringBoot底层到底是如何完成自动配置的。 源码跟踪技巧…

QPaint绘制自定义仪表盘组件03

网上视频抄的&#xff0c;用来自己看一下&#xff0c;看完就删掉 ui mainwindow.h #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QDebug> #include <QtMath> #include <QDialog> #include <QPainter> #include …

嵌入式中汇编语言的基本实现

大家好&#xff0c;今天给大家分享&#xff0c;GNU汇编的语法。 第一&#xff1a;汇编简介 GNU 汇编语法适用于所有的架构&#xff0c;并不是 ARM 独享的&#xff0c;GNU 汇编由一系列的语句组成&#xff0c; 每行一条语句&#xff0c;每条语句有三个可选部分&#xff0c;如下…

java List.forEach 引发的生产投诉

代码运行时直接抛异常报错&#xff0c;这个算是不幸中的万幸&#xff0c;至少可以及时发现并去解决代码运行不报错&#xff0c;但是业务逻辑莫名其妙的出现各种奇怪问题&#xff0c;这种就比较悲剧了&#xff0c;因为这个问题稍不留神的话&#xff0c;可能就会给后续业务埋下隐…

【C语言】熟悉文件顺序读写函数

前言 本篇详细介绍了 文件顺序读写常用函数&#xff0c;快来看看吧~ 欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 前言 ​编辑 文件顺序读写函数 fgetc函数 示例 fputc函数 逐个字符写入 写入26个字母 文…

数学建模函数插值与拟合

1.脑图 2.介绍 我们自己找到的函数&#xff0c;在已知点处的函数值和要求的函数在这些点处的函数值相等&#xff0c;这个函数 就叫做未知函数的插值函数&#xff1b; 多项式函数构成的插值函数的集合叫做函数类&#xff1b; 3.拉格朗日插值法 基函数的求法和插值函数的构造…

使用QEMU搭建U-Boot+LinuxKernel+busybox+NFS嵌入式开发环境

目录 0.课程大纲1.为什么要使用QEMU学习嵌入式QEMU简介使用QEMU可以做哪些事情?当前嵌入式行业现状如何适应这种变化使用QEMU学习嵌入式有哪些好处?驱动开发技能为什么要学习Linux 2.搭建嵌入式开发基本环境2.1.安装u-boot-tools2.2.安装交叉编译工具什么是ABI和EABI 3.QEMU安…

MySQL:开始深入其数据(一)DML

在上一章初识MySQL了解了如何定义数据库和数据表&#xff08;DDL&#xff09;&#xff0c;接下来我们开始开始深入其数据,对其数据进行访问&#xff08;DAL&#xff09;、查询DQL&#xff08;&#xff09;和操作(DML)等。 通过DML语句操作管理数据库数据 DML (数据操作语言) …