Machine Vision Technology:Lecture2 Linear filtering

news2024/11/19 15:25:02

Machine Vision Technology:Lecture2 Linear filtering

    • Types of Images
    • Image denoising图像去噪
    • Defining convolution卷积的定义
    • Key properties卷积的关键属性
    • 卷积的其它属性
    • Annoying details
    • 卷积练习
    • Sharpening锐化
    • Gaussian Kernel
    • Noise噪声 分类
    • Gaussian noise高斯噪声
    • Reducing salt-and-pepper noise:Median filtering中值滤波
    • Sharpening revisited:再看锐化
    • Edge detection | Origin of edges
    • Characterzing edges描述边缘
    • Image gradient图像梯度

计算机视觉(本科) 北京邮电大学 鲁鹏


Types of Images

二进制图像Binary:黑白图像。0表示Black,1表示White。

灰度图像Grayscale:每个像素用范围在0-255的灰度值表示。

彩色图像Color:RGB三通道。

Image denoising图像去噪

Moving average移动平均:一种通过使用过去若干时间段的平均值计算得出的平均值。移动平均值会定期变化,最早的数值会被基于最新数据的数值所替代。

  • 用邻域的加权平均值替换每个像素
  • 权重被称为滤波器核 filter kernel

一个3x3的权重为平均值的滤波核:

在这里插入图片描述

Defining convolution卷积的定义

Let f be the image and g be the kernel. The output of convolving fwith g is denoted f * g.

f f f 为图像, g g g 为核, f f f g g g 的卷积输出定义为 f ∗ g f*g fg
( f ∗ g ) [ m , n ] = ∑ k , l f [ m − k , n − l ] g [ k , l ] (f*g)[m,n] = \sum_{k,l}{f[m-k, n-l]g[k,l]} (fg)[m,n]=k,lf[mk,nl]g[k,l]
对卷积进一步展开:
( f ∗ g ) [ m , n ] = ∑ k , l f [ m − k , n − l ] g [ k , l ] = ∑ k = − 1 k = 1 ∑ l = − 1 l = 1 f [ m − k , n − l ] g [ k , l ] \begin{align} (f*g)[m,n] &= \sum_{k,l}{f[m-k, n-l]g[k,l]} \\ &= \sum_{k=-1}^{k=1} \sum_{l=-1}^{l=1} {f[m-k, n-l]g[k,l]} \end{align} (fg)[m,n]=k,lf[mk,nl]g[k,l]=k=1k=1l=1l=1f[mk,nl]g[k,l]

假设有f为7x7,g为3x3的卷积核,此时k取-1、0、1,l取-1、0、1。

卷积示意图如下:

请添加图片描述

当m=2,n=2时:卷积操作如下
( f ∗ g ) [ 2 , 2 ] = ∑ k , l f [ 2 − k , 2 − l ] g [ k , l ] = ∑ k = − 1 k = 1 ∑ l = − 1 l = 1 f [ 2 − k , 2 − l ] g [ k , l ] = f [ 3 , 3 ] g [ − 1 , − 1 ] + f [ 3 , 2 ] g [ − 1 , 0 ] + f [ 3 , 1 ] g [ − 1 , 1 ] + f [ 2 , 3 ] g [ 0 , − 1 ] + f [ 2 , 2 ] g [ 0 , 0 ] + f [ 2 , 1 ] g [ 0 , 1 ] + f [ 1 , 3 ] g [ 1 , − 1 ] + f [ 1 , 2 ] g [ 1 , 0 ] + f [ 1 , 1 ] g [ 1 , 1 ] \begin{align} (f*g)[2,2] &= \sum_{k,l}{f[2-k, 2-l]g[k,l]} \\ &= \sum_{k=-1}^{k=1} \sum_{l=-1}^{l=1} {f[2-k, 2-l]g[k,l]} \\ &= f[3,3]g[-1,-1] + f[3,2]g[-1,0] + f[3,1]g[-1,1] \\ &+ f[2,3]g[0,-1] + f[2,2]g[0,0] + f[2,1]g[0,1] \\ &+ f[1,3]g[1,-1] + f[1,2]g[1,0] + f[1,1]g[1,1] \end{align} (fg)[2,2]=k,lf[2k,2l]g[k,l]=k=1k=1l=1l=1f[2k,2l]g[k,l]=f[3,3]g[1,1]+f[3,2]g[1,0]+f[3,1]g[1,1]+f[2,3]g[0,1]+f[2,2]g[0,0]+f[2,1]g[0,1]+f[1,3]g[1,1]+f[1,2]g[1,0]+f[1,1]g[1,1]

示意图如下:
请添加图片描述

卷积核是翻转的:ppt中的图给成了镜像翻转,但上面推导怎么是旋转180度?

请添加图片描述

Key properties卷积的关键属性

  • 线性性质Linearity: f i l t e r ( f 1 + f 2 ) = f i l t e r ( f 1 ) + f i l t e r ( f 2 ) filter(f_1 + f_2) = filter(f_1) + filter(f_2) filter(f1+f2)=filter(f1)+filter(f2)
  • 平移不变性Shift invariance: f i l t e r ( s h i f t ( f ) ) = s h i f t ( f i l t e r ( f ) ) filter(shift(f)) = shift(filter(f)) filter(shift(f))=shift(filter(f))
  • 理论结果Theoretical result:通过理论分析和计算得出的预测性结果:任何线性平移不变算子都可以表示为卷积

卷积的其它属性

  • 交换律Commutative: a ∗ b = b ∗ a a * b = b * a ab=ba

    从概念上讲,滤波器和信号没有区别

  • 结合律Associative: a ∗ ( b ∗ c ) = ( a ∗ b ) ∗ c a*(b*c)=(a*b)*c a(bc)=(ab)c

  • 分配律Distributes over addition: a ∗ ( b + c ) = a ∗ b + a ∗ c a*(b+c) = a*b + a*c a(b+c)=ab+ac

  • 标量因子提出Scalars factor out: k a ∗ b = a ∗ k b = k ( a ∗ b ) ka*b = a*kb = k(a*b) kab=akb=k(ab)

  • 同一性Identity:单位脉冲unit impulse e = [ . . . , 0 , 0 , 1 , 0 , 0 , . . . ] e = [..., 0,0,1,0,0,...] e=[...,0,0,1,0,0,...] a ∗ e = a a*e=a ae=a

Annoying details

卷积的输出结果与填充方式有关:在MATLAB中

filter2(g, f, shape)
  • shape='full':输出大小是f和g的和
  • shape='same':输出大小和f相同
  • shape='valid':输出大小是f和g的差

请添加图片描述

图像进行外推填充方式:

  • clip filter (black): imfilter(f, g, 0) 周围补一圈黑色,像素为0的黑边
  • wrap around: imfilter(f, g, ‘circular’) 图像右侧边缘补到左边,左侧边缘补到右边,类似圆筒,上下类似。
  • copy edge: imfilter(f, g, ‘replicate’) 拉伸边缘像素
  • reflect across edge: imfilter(f, g, ‘symmetric’) 镜像边缘像素

卷积练习

请添加图片描述

用右侧像素替代当前像素,相当于左移。

请添加图片描述

用box滤波器进行Blur模糊:

请添加图片描述

锐化滤波器Sharpening filter:突出和平均值的差异

请添加图片描述

Sharpening锐化

请添加图片描述

假设用 I I I 表示原图, e e e 表示单位脉冲,g表示box filter,上述过程表示如下:

原图减去滤波后的图: I ∗ e − I ∗ g = I ∗ ( e − g ) I*e - I*g = I*(e-g) IeIg=I(eg)

然后: I ∗ e + I ∗ ( e − g ) = I ∗ ( 2 e − g ) I*e + I*(e-g) = I*(2e - g) Ie+I(eg)=I(2eg)

所以可以用新的滤波器 2 e − g 2e-g 2eg 与原图进行卷积,直接得到sharpened图像。

请添加图片描述

Gaussian Kernel

为了消除边缘影响,根据邻近像素与中心的接近程度对其权重贡献。
G σ = 1 2 π σ 2 e − ( x 2 + y 2 ) 2 σ 2 G_{\sigma} = \frac{1}{2 \pi \sigma^2} e^{- \frac{(x^2 + y^2)}{2 \sigma^2}} Gσ=2πσ21e2σ2(x2+y2)
请添加图片描述

5x5高斯模版生成过程:

  • 中心坐标为(0,0),右边为(1,0),其余以此类推。
  • 将坐标的x和y带入高斯函数得到值。
  • 所有值还需要进行归一化(某个值除以所有值的和)。

模版的所有值加和为1,使模版操作不改变图像亮度。


  • 标准偏差 σ \sigma σ 决定平滑程度
  • 当固定模版的大小时:

σ \sigma σ 越小,模版的中间值越大,所占比重较大,被平滑的不那么厉害。

σ \sigma σ 越大,模版的中间值越小,所占权重变小,被平滑的厉害。

请添加图片描述

  • σ \sigma σ 固定时,模版大小改变:

请添加图片描述

当size为10时,模版有100个值,size为30时,模版有900个值,再归一化后,size小的模版权重相对更大些。

因此size较小时,被平滑的不那么厉害;size较大时,平滑的厉害。

  • 模版大小选取遵循原则:将滤波器半宽度设置为约 3 σ 3\sigma 3σ。滤波器大小为 3 σ + 3 σ + 1 3\sigma + 3\sigma + 1 3σ+3σ+1。例如 σ = 1 \sigma=1 σ=1 时,滤波器大小为3x3

高斯滤波器特点:

  • 从图像中去除“高频”成分(低通滤波器)

  • 高斯滤波与自身的卷积是另一个高斯滤波器。

    例如连续两个标准差为 σ \sigma σ 的高斯核进行卷积,等价于一个标准差为 2 σ \sqrt{2} \sigma 2 σ 高斯核进行卷积。遵循勾股定理。

    1.将原图进行参数为 σ \sigma σ 的高斯滤波: I ′ = I ∗ g σ I' = I * g_{\sigma} I=Igσ

    2.将上面结果进行参数为 σ \sigma σ 的高斯滤波: I ′ ′ = I ′ ∗ g σ I'' = I' * g_{\sigma} I′′=Igσ

    3.等价与直接将原图进行参数为 2 σ \sqrt{2} \sigma 2 σ 的高斯滤波: I ′ ′ = I ∗ g 2 σ I'' = I * g_{\sqrt{2} \sigma} I′′=Ig2 σ

  • 可分离核Separable Kernel:二维高斯函数可以被表示为两个一维高斯函数的乘积。

G σ ( x , y ) = 1 2 π σ 2 e − ( x 2 + y 2 ) 2 σ 2 = ( 1 2 π σ e − x 2 2 σ 2 ) ( 1 2 π σ e − y 2 2 σ 2 ) \begin{align} G_{\sigma}(x,y) &= \frac{1}{2 \pi \sigma^2} e^{- \frac{(x^2 + y^2)}{2 \sigma^2}} \\ &= (\frac{1}{2 \pi \sigma} e^{- \frac{x^2}{2 \sigma^2}})(\frac{1}{2 \pi \sigma} e^{- \frac{y^2}{2 \sigma^2}}) \\ \end{align} Gσ(x,y)=2πσ21e2σ2(x2+y2)=(2πσ1e2σ2x2)(2πσ1e2σ2y2)

可分离性的例子:Separability example

首先使用2D高斯滤波器对中心位置进行卷积:求得结果是65。

请添加图片描述

2D高斯滤波器可以分解为两个一维高斯滤波器的乘积:

请添加图片描述

使用分解的两个一维高斯滤波器原原图像依次卷积:行卷积核列卷积。最终得到结果仍然是65.

请添加图片描述

请添加图片描述

Separability分离性的用途:

n × n n \times n n×n 的图像,使用 m × m m \times m m×m 的核进行卷积的复杂度: O ( n 2 m 2 ) O(n^2 m^2) O(n2m2)

如果使用分离的卷积的复杂度: O ( n 2 m ) + O ( n m ) = O ( n 2 m ) O(n^2 m) + O(n m) = O(n^2 m) O(n2m)+O(nm)=O(n2m)

Noise噪声 分类

  • 椒盐噪声Salt and pepper noise:包含随机出现的黑色和白色像素。
  • 脉冲噪声Impulse noise:包含随机出现的白色像素。
  • 高斯噪声Gaussian noise:从高斯正态分布得出的强度变化

请添加图片描述

Gaussian noise高斯噪声

高斯噪声图 f ( x , y ) f(x,y) f(x,y) 的产生如下:
f ( x , y ) = f ˉ ( x , y ) + η ( x , y ) f(x, y) = \bar{f}(x, y) + \eta(x,y) f(x,y)=fˉ(x,y)+η(x,y)
其中 f ˉ ( x , y ) \bar{f}(x,y) fˉ(x,y) 为理想的图像, η ( x , y ) \eta(x,y) η(x,y) 为噪声处理,所有噪声iid于正态分布:
η ( x , y ) ∼ N ( μ , σ ) \eta(x,y) \sim \mathbf{N}(\mu, \sigma) η(x,y)N(μ,σ)
假设:独立,均值为0的噪声

请添加图片描述

  • 减少高斯噪声Reducing Gaussian noise:使用高斯滤波器

请添加图片描述

上图中第一行是 σ \sigma σ 取 0.05、0.1、0.2 产生的高斯噪声图。也就对应没有平滑的图。

第二行是使用 σ = 1 \sigma = 1 σ=1 的高斯滤波结果,此时高斯核大小为 7 × 7 7 \times 7 7×7

第三行是使用 σ = 2 \sigma = 2 σ=2 的高斯滤波结果,此时高斯核大小为 13 × 13 13 \times 13 13×13

结论:使用较大标准差的平滑可以抑制噪声, 但也会使图像模糊。

Reducing salt-and-pepper noise:Median filtering中值滤波

中值滤波器通过选择窗口中的中值强度对窗口进行操作。

请添加图片描述

中值滤波是非线性滤波。对异常值具有稳健性的优点:Robustness to outliers

请添加图片描述

下面是有椒盐噪声的图和均值滤波后的图:

请添加图片描述

Sharpening revisited:再看锐化

请添加图片描述

拉普拉斯高斯:

请添加图片描述

Edge detection | Origin of edges

  • 边缘检测目标:识别图像中的突变(不连续)。直观地说,大多数来自图像的语义和形状信息都可以编码在边缘中。

各种边的起源(种类):边缘是由多种因素造成的

请添加图片描述

  • surface normal discontinuity表面法向不连续:也就是面上的不连续,两个面的交界处产生的边。
  • depth discontinuity间断面深度:深度上的边缘,上面瓶子因为是圆形的,本身没有边,但图像只能显示其中的一部分,由于深度上的不连续形成的边。
  • surface color discontinuity表面颜色不连续:文字。
  • illumination discontinuity照明不连续:阴影产生的边。

Characterzing edges描述边缘

边缘是图像强度函数中快速变化的地方:一阶导的极值点。

请添加图片描述

对于2D函数 f ( x , y ) f(x,y) f(x,y) 的偏导数定义:
∂ f ( x , y ) ∂ x = lim ⁡ ϵ → 0 f ( x + ϵ , y ) − f ( x , y ) ϵ \frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon,y) - f(x,y)}{\epsilon} xf(x,y)=ϵ0limϵf(x+ϵ,y)f(x,y)
对于离散数据,我们可以使用有限差分进行近似:
∂ f ( x , y ) ∂ x ≈ f ( x + 1 , y ) − f ( x , y ) 1 \frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + 1,y) - f(x,y)}{1} xf(x,y)1f(x+1,y)f(x,y)
为了实现上面的卷积,相关的过滤器如何设计?

请添加图片描述

左图的滤波器: [ − 1 , 1 ] [-1,1] [1,1] 。水平方向卷积,求得垂直方向边缘。

右图的滤波器: [ − 1 , 1 ] T [-1,1]^T [1,1]T [ 1 , − 1 ] T [1,-1]^T [1,1]T 。垂直方向卷积,求得水平方向边缘。

Image gradient图像梯度

图像的梯度是由偏导数组成的向量:
∇ f = [ ∂ f ∂ x , ∂ f ∂ y ] \nabla f = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}] f=[xf,yf]

  • 梯度方向指向信号变化最大的方向,也就是指向图像强度增加最快的方向。
  • 梯度方向与边缘垂直。

请添加图片描述

梯度方向定义:
θ = t a n − 1 ( ∂ f ∂ y / ∂ f ∂ x ) \theta = tan^{-1} (\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}) θ=tan1(yf/xf)
边缘强度由梯度幅度给出:The edge strength is given by the gradient magnitude
∣ ∣ ∇ f ∣ ∣ = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 || \nabla f || = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} ∣∣∇f∣∣=(xf)2+(yf)2

  • 使用梯度幅值来描述是否是边的可能性,幅值越大,偏导数越大,偏导数越有可能是极值点,则该点越有可能是边。这也叫做边缘强度。

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1478664.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Sora:开启视频生成新时代的强大人工智能模型

目录 一、Sora模型的诞生与意义 二、Sora模型的技术特点与创新 三、Sora模型的应用前景与影响 四、面临的挑战与未来发展 1、技术挑战 2、道德和伦理问题 3、计算资源需求 4、未来发展方向 随着信息技术的飞速发展,人工智能(AI)已成为…

jenkins插件下载失败bug

如果遇到安装jenkins插件经常失败并报以下类似错误,很可能是因为jenkins国外官方插件地址下载速度非常慢,我们可以修改为国内插件地址。 java.io.IOException: Failed to load: SCM API Plugin (scm-api 676.v886669a_199a_a_) - Jenkins (2.361.4) or h…

外包干了6个月,技术退步明显。。。。。

先说一下自己的情况,本科生,2019年我通过校招踏入了重庆一家软件公司,开始了我的职业生涯。那时的我,满怀热血和憧憬,期待着在这个行业中闯出一片天地。然而,随着时间的推移,我发现自己逐渐陷入…

Java中的时间API:Date、Calendar到Java.time的演变

引言 在软件开发中,处理时间和日期是一项基本且不可或缺的任务。无论是日志记录、用户信息管理还是复杂的定时任务,准确地处理时间都显得至关重要。然而,时间的处理并不像它看起来那么简单,尤其是当我们考虑到时区、夏令时等因素…

稀疏图带负边的全源最短路Johnson算法

BellmanFord算法 Johnson算法解决的问题 带负权的稀疏图的全源最短路 算法流程 重新设置的每条边的权重都大于或等于0,跑完Djikstra后得到的全源最短路,记得要还原,即:f(u,v) d(u,v) - h[u] h[v] 例题

Javaweb之SpringBootWeb案例之 SpringBoot原理的详细解析

3. SpringBoot原理 SpringBoot使我们能够集中精力地去关注业务功能的开发,而不用过多地关注框架本身的配置使用。而我们前面所讲解的都是面向应用层面的技术,接下来我们开始学习SpringBoot的原理,这部分内容偏向于底层的原理分析。 在剖析Sp…

LeetCode225. 用队列实现栈(C++)

LeetCode225. 用队列实现栈 题目链接代码 题目链接 https://leetcode.cn/problems/implement-stack-using-queues/description/ 代码 class MyStack { public:queue<int> q1;queue<int> q2;MyStack() {}void push(int x) {q1.push(x);}int pop() {int size q1…

【Unity】如何设置Unity脚本的执行顺序?

在 Unity 编辑器中设置脚本执行顺序 在 Unity 中&#xff0c;如果有多个脚本&#xff0c;并且它们之间的执行顺序很重要&#xff0c;可以通过编辑器设置来确保它们按照自己期望的顺序执行。这对于确保某些脚本在其他脚本之前执行非常有用。在这篇文章中&#xff0c;将向会展示如…

MySQL 5.7.31详细下载安装配置

1、下载步骤 下载完毕后将文件解压到你想保存到的盘和目录内。我是将文件解压到D:\Mysql目录下面 2.配置环境变量 1.系统—>高级系统设置—>环境变量—>系统变量 在系统变量中点击新建&#xff0c;变量名为量名为&#xff1a;MYSQL_HOME&#xff0c;添加你的mysql…

怎么调用文心一言的api接口生成一个简单的聊天机器人(python代码)

寒假在学习大模型&#xff0c;但也没弄出多少眉目&#xff0c;电脑性能还有点小问题&#xff0c;大模型总跑不起来&#xff0c;只会简单调用一下现有的大模型的接口&#xff0c;例如&#xff1a;文心一言&#xff0c;下面展示一下代码&#xff1a; import tkinter as tk impor…

比亚迪领航新能源时代:汉唐传承,品牌力量

比亚迪&#xff0c;以中国文化的深度与自信&#xff0c;为新能源汽车领域注入强大动力。汉唐车型&#xff0c;不仅承载着中国古代文明的辉煌&#xff0c;更以其创新技术和环保理念&#xff0c;终结油电之争&#xff0c;让燃油车再次破防。作为销量冠军&#xff0c;比亚迪品牌的…

Leetcode : 215. 数组中的第 K 个最大元素

给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。 思路&#xff1a;最开始排序算法&…

超越传统模式:商品企划系统如何助力鞋服品牌创新突围?

随着市场竞争的日益激烈&#xff0c;传统的商品管理模式已经难以满足现代鞋服品牌的发展需求。为了在这个快速变化的时代中立足&#xff0c;许多品牌开始寻求创新和突破。而商品企划系统&#xff0c;作为一种新兴的管理工具&#xff0c;正成为鞋服品牌创新突围的关键。 一、打…

域控操作七:让某人不执行某策略/单独放行某人

比如我设置的是禁用移动热点&#xff0c;我在这里对某人拒绝&#xff0c;那他就能用移动热点

SAP PO接口行项目json缺少中括号[]问题

PO接口小问题问题&#xff1a;如果需要同时传输DATA与ITEM&#xff0c;此处选择很重要&#xff0c;如果选择&#xff1a;HTTP Header ITEM将缺少[].需要注意 PO接口小问题 问题&#xff1a;如果需要同时传输DATA与ITEM&#xff0c;此处选择很重要&#xff0c;如果选择&#…

模型优化_如何提高网络/模型的泛化能力?(全面)

目录 1. 以数据为中心的泛化方法 1.1 使用更多数据 1.2 做好数据预处理 特征工程 1.3 数据增强 1.4 调整数据分布 2. 以模型为中心的泛化方法 2.1 使用更大批次 超参数调优 2.2 调整目标函数 2.3 调整网络结构 2.4 屏蔽网络节点 2.5 权值正则化 2.6 偏差-方差权衡…

基于springboot+vue的企业oa管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

python_可视化_交互_多条线段点击高亮显示

需求 使用matplotlib 绘制折线图 响应鼠标事件 单击折线 线条高亮显示 解决方法: 使用 mplcursors 库, 一句代码可实现. 代码 import matplotlib.pyplot as plt import mplcursors import numpy as np# 生成一些示例数据 x np.linspace(0, 10, 100) y np.sin(x)# 创建绘图…

第三节-docker-cs架构分析

一、组成 docker engine&#xff1a;docker-client、rest-api、dockerd containerd&#xff1a; 1、管理容器生命周期 2、拉取/推送镜像 3、存储管理 4、调用runc 5、管理网络 containerd-shim&#xff1a;相当于一个驱动&#xff0c;containerd通过containerd-shim驱使…

Unity绘制六边形体

现在steam上面有很多下棋类/经营类的游戏都是用六边形的地形&#xff0c;比较美观而且实用&#xff0c;去年在版本末期我也自己尝试做了一个绘制六边体的demo&#xff0c;一年没接触unity竟然都要忘光了&#xff0c;赶紧在这边记录一下。 想cv代码可以直接拉到代码章节 功能 …