【LeetCode刷题】146. LRU 缓存

news2025/1/22 21:04:02

请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

思路:这道题的难点在于记录最近最少使用,使用map可以满足get的O(1),但是无法记录最近最少使用的数据;如果使用数组,删除/增加的时间复杂度则是O(n),也不满足。

使用哈希表 + 双向链表可以满足删除/增加的时间复杂度为O(1)。

这个图太形象了。

(1)双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的

(2)哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。

(3)对于 get 操作,首先判断 key 是否存在:

        (a)如果 key 不存在,则返回 −1;

        (b)如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部,最后返回该节点的值。

(3)对于 put 操作,首先判断 key 是否存在:

        (a)如果 key 不存在,使用 key 和 value 创建一个新的节点,在双向链表的头部添加该节点,并将 key 和该节点添加进哈希表中。然后判断双向链表的节点数是否超出容量,如果超出容量,则删除双向链表的尾部节点,并删除哈希表中对应的项;

        (b)如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将对应的节点的值更新为 value,并将该节点移到双向链表的头部。

思路很清晰

代码实现

struct DLinkedNode {
    int key, value;
    DLinkedNode* prev;
    DLinkedNode* next;
    DLinkedNode(): key(0), value(0), prev(nullptr), next(nullptr) {}
    DLinkedNode(int _key, int _value): key(_key), value(_value), prev(nullptr), next(nullptr) {}
};

class LRUCache {
private:
    unordered_map<int, DLinkedNode*> cache;
    DLinkedNode* head;
    DLinkedNode* tail;
    int size;
    int capacity;

public:
    LRUCache(int _capacity): capacity(_capacity), size(0) {
        // 使用伪头部和伪尾部节点
        head = new DLinkedNode();
        tail = new DLinkedNode();
        head->next = tail;
        tail->prev = head;
    }
    
    int get(int key) {
        if (!cache.count(key)) {
            return -1;
        }
        // 如果 key 存在,先通过哈希表定位,再移到头部
        DLinkedNode* node = cache[key];
        moveToHead(node);
        return node->value;
    }
    
    void put(int key, int value) {
        if (!cache.count(key)) {
            // 如果 key 不存在,创建一个新的节点
            DLinkedNode* node = new DLinkedNode(key, value);
            // 添加进哈希表
            cache[key] = node;
            // 添加至双向链表的头部
            addToHead(node);
            ++size;
            if (size > capacity) {
                // 如果超出容量,删除双向链表的尾部节点
                DLinkedNode* removed = removeTail();
                // 删除哈希表中对应的项
                cache.erase(removed->key);
                // 防止内存泄漏
                delete removed;
                --size;
            }
        }
        else {
            // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
            DLinkedNode* node = cache[key];
            node->value = value;
            moveToHead(node);
        }
    }

    void addToHead(DLinkedNode* node) {
        node->prev = head;
        node->next = head->next;
        head->next->prev = node;
        head->next = node;
    }
    
    void removeNode(DLinkedNode* node) {
        node->prev->next = node->next;
        node->next->prev = node->prev;
    }

    void moveToHead(DLinkedNode* node) {
        removeNode(node);
        addToHead(node);
    }

    DLinkedNode* removeTail() {
        DLinkedNode* node = tail->prev;
        removeNode(node);
        return node;
    }
};

参考:【字节一面】 LRU Cache 实现剖析_哔哩哔哩_bilibili

链接:. - 力扣(LeetCode)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1474847.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MYSQL学习笔记:索引

MYSQL学习笔记&#xff1a;索引 文章目录 MYSQL学习笔记&#xff1a;索引索引的分类索引的创建删除索引优化B树索引B树InnoDB主键和二级索引树聚集索引与非聚集索引哈希索引INNODB的自适应哈希索引索引和慢查询 用索引也是要涉及磁盘I/O的操作的索引也是一种数据结构&#xff0…

【计算机网络】数据链路层|封装成帧|透明传输|差错检测|PPP协议|CSMA/CD协议

目录 一、思维导图 ​ 二、数据链路层功能概述 1.数据链路层概述 2.数据链路层功能概述——封装成帧 3.数据链路层功能概述——透明传输 4.数据链路层功能概述——差错检测 三、数据链路层重要协议 1.数据链路层重要协议&#xff1a;PPP协议 2.数据链路层重要协议&#x…

LeetCode 刷题 [C++] 第141题.环形链表

题目描述 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&a…

2024数字中国创新大赛·数据要素赛道“能源大数据应用赛”正式上线!参赛指南请查收

近日&#xff0c;由国网福建电力承办的2024数字中国创新大赛能源大数据应用赛正式上线发布。赛事按照数字中国建设、能源革命的战略要求&#xff0c;围绕能源数据要素x、能源数字技术、能源商业模式等热点设置赛题&#xff0c;诚邀社会各界为加快建成新型电力系统出谋划策&…

DVWA 靶场之 Command Injection(命令执行)middlehigh

对于 middle 难度的 我们直接先看源码 <?phpif( isset( $_POST[ Submit ] ) ) {// Get input$target $_REQUEST[ ip ];// Set blacklist$substitutions array(&& > ,; > ,);// Remove any of the characters in the array (blacklist).$target str_rep…

VUE3搭载到服务器

1.搭建服务器 使用 Windows 自带的 IIS 作为服务器。 步骤如下&#xff1a;https://blog.csdn.net/qq_62464995/article/details/130140673 同时&#xff0c;上面的步骤中&#xff0c;还使用了 cpolar 将 IIS 本地网址映射到公共网址。 注&#xff1a; cpolar客户端&#xf…

java springmvc/springboot 项目通过HttpServletRequest对象获取请求体body工具类

请求 测试接口 获取到的 获取到打印出的json字符串里有空格这些&#xff0c;在json解析的时候正常解析为json对象了。 工具类代码 import lombok.extern.slf4j.Slf4j; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.we…

(全部习题答案)研究生英语读写教程基础级教师用书PDF|| 研究生英语读写教程提高级教师用书PDF

研究生英语读写教程基础级教师用书PDF 研究生英语读写教程提高级教师用书PDF pdf下载&#xff08;完整版下载&#xff09; &#xff08;1&#xff09;研究生英语读写教程基础级教师用书PDF &#xff08;2&#xff09;研究生英语读写教程基提高级教师用书PDF

yolov9 瑞芯微芯片rknn部署、地平线芯片Horizon部署、TensorRT部署

特别说明&#xff1a;参考官方开源的yolov9代码、瑞芯微官方文档、地平线的官方文档&#xff0c;如有侵权告知删&#xff0c;谢谢。 模型和完整仿真测试代码&#xff0c;放在github上参考链接 模型和代码。 之前写过yolov8检测、分割、关键点模型的部署的多篇博文&#xff0c;y…

网络安全之内容安全

内容安全 攻击可能只是一个点&#xff0c;防御需要全方面进行 IAE引擎 DFI和DPI技术--- 深度检测技术 DPI --- 深度包检测技术--- 主要针对完整的数据包&#xff08;数据包分片&#xff0c;分段需要重组&#xff09;&#xff0c;之后对 数据包的内容进行识别。&#xff08;应用…

分享three.js和cannon.js构建Web 3D场景

使用 three.js&#xff0c;您不再需要花哨的游戏PC或控制台来显示逼真的3D图形。 您甚至不需要下载特殊的应用程序。现在每个人都可以使用智能手机和网络浏览器体验令人惊叹的3D应用程序。 这个惊人的库和充满活力的社区是您在浏览器、笔记本电脑、平板电脑或智能手机上创建游…

HTTP 的 multipart 类型

上一篇文章讲到 http 的 MIME 类型 http MIME 类型 里有一个 multipart 多部分对象集合类型&#xff0c;这个类型 http 指南里有讲到&#xff1a;MIME 中的 multipart&#xff08;多部分&#xff09;电子邮件报文中包含多个报文&#xff0c;它们合在一起作为单一的复杂报文发送…

System Verilog 要点概览

二进制 常量 格式&#xff1a;二进制位宽进制符号&#xff08;b:2;h:16;d:10&#xff09;数据 1b1 1b0 16habcd 4d10变量 logic a;//一位二进制 logic [3:0]b;//4位二进制 logic [31:0][31:0]c;//32*32位二进制组合/位绑定 {a, 1b1}//高位是a&#xff0c;低位是常数二进制…

go test用法(获取单元测试覆盖率)

go test用法&#xff08;获取ut覆盖率&#xff09; 为了提升系统的稳定性&#xff0c;一般公司都会对代码的单元测试覆盖率有一定要求。下面针对golang自带的测试命令go test做讲解。 1 命令 1.1 go test ./… &#xff08;运行当前目录及所有子目录下的测试用例&#xff09; …

读《Shape-Guided: Shape-Guided Dual-Memory Learning for 3D Anomaly Detection》

Chu Y M, Chieh L, Hsieh T I, et al. Shape-Guided Dual-Memory Learning for 3D Anomaly Detection[J]. 2023.&#xff08;为毛paperwithcode上面曾经的榜一引用却只有1&#xff09; 摘要 专家学习 无监督 第一个专家&#xff1a;局部几何&#xff0c;距离建模 第二个专家&…

【React源码 - 调度任务循环EventLoop】

我们知道在React中有4个核心包、2个关键循环。而React正是在这4个核心包中运行&#xff0c;从输入到输出渲染到web端&#xff0c;主要流程可简单分为一下4步&#xff1a;如下图&#xff0c;本文主要是介绍两大循环中的任务调度循环。 4个核心包&#xff1a; react&#xff1a;…

数据结构 队列

一定义 1.1概述&#xff1a; 队列只允许在一端进行插入操作&#xff0c;而在另一端进行删除操作的线性表 特点&#xff1a;队列是先进先出的线性表 允许插入的一端称为队尾&#xff0c;允许删除的一端是队头 这里我们就介绍链式的 1.2 建立队列 这里说一句 其实不管是栈还…

php基础学习之错误处理(其一)

一&#xff0c;错误处理的概念 错误处理指的是系统(或者用户)在执行某些代码的时候&#xff0c;发现有错误&#xff0c;就会通过错误处理的形式告知程序员&#xff0c;俗称报错 二&#xff0c;错误分类 语法错误&#xff1a;书写的代码不符合 PHP 的语法规范&#xff0c;语法错…

【医学影像】LIDC-IDRI数据集的无痛制作

LIDC-IDRI数据集制作 0.下载0.0 链接汇总0.1 步骤 1.合成CT图reference 0.下载 0.0 链接汇总 LIDC-IDRI官方网址&#xff1a;https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteriaLIDC-IDRINBIA Data Retriever 下载链接&#xff1a;https://wiki.canceri…

基于springboot+vue的编程训练系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…