探索水下低光照图像检测性能,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建海底生物检测识别分析系统

news2025/4/6 16:54:10

海底这类特殊数据场景下的检测模型开发相对来说比较少,在前面的博文中也有一些涉及,感兴趣的话可以自行移步阅读即可:

《尝试探索水下目标检测,基于yolov5轻量级系列模型n/s/m开发构建海底生物检测系统》

《基于YOLOv5+C3CBAM+CBAM注意力的海底生物[海参、海胆、扇贝、海星]检测识别分析系统》

《基于自建数据集【海底生物检测】使用YOLOv5-v6.1/2版本构建目标检测模型超详细教程》 

《探索水下低光照图像检测性能,基于轻量级YOLOv8模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于DETR(DEtection TRansformer)模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建海底生物检测识别分析系统》

在前文我们已经实践开发了YOLO系列的模型,本文的主要想法是想要基于最为经典的YOLOv5来开发构建海底生物检测识别系统。

首先看下实例效果:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

简单看下实例数据情况:

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test

# Classes
names:
  0: holothurian
  1: echinus
  2: scallop
  3: starfish

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

从整体实验结果对比来看:n系列的模型效果最差,被其他几款模型拉开了明显的差距,s系列的模型次之,m和l系列的模型性能相近,x系列的模型最优,略高于m和l系列的模型,考虑到计算量的问题,这里我们最终选择使用m系列的模型来作为最终的推理模型。

接下来就以m系列的模型为基准,详细看下结果详情:

【Batch实例】

【数据分布可视化】

【PR曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469539.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

便携式航空电源-飞机启动电源的创新设计

在航空航天领域,电力供应是至关重要的。无论是飞机、直升机还是无人机,都需要稳定、可靠的电力支持以确保飞行的安全和效率。便携式航空电源这种飞机地面方便携带的启动电源应运而生,为航空航天领域带来了新的动力。 便携式航空电源是一种专…

GO-ICP的使用(一)

一、代码下载以、修改以及使用 下载: 链接:yangjiaolong/Go-ICP: Implementation of the Go-ICP algorithm for globally optimal 3D pointset registration (github.com) 解压之后 : 首先visual studio项目,配置好PCL环境&…

软件应用场景,物流货运配货单打印模板软件单据打印查询管理系统软件教程

软件应用场景,物流货运配货单打印模板软件单据打印查询管理系统软件教程 一、前言 以下软件以 佳易王物流快运单打印查询管理系统软件V17.1 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、打印模式可以分为 直打模式和套打模式 直打模…

消息中间件之RocketMQ源码分析(十六)

Broker读写分离机制 在RocketMQ中,有两处地方使用了"读写分离"机制 Broker Master-Slave读写分离:写消息到Master Broker,从Slave Broker读取消息。Broker配置为Slave Broker读取消息。 Broker配置为slaveReadEnableTrue(默认False),消息占用内存百分比配…

力扣随笔之寻找重复数(中等287)

思路1:暴力解法,根据要求不修改数组且只用常量级O(1)的额外空间,我们写两层嵌套循环,寻找重复的数;可以解决部分问题,但会超出时间限制无论Java还是C; Java实现: class Solution {public int findDuplicat…

WSL里的Ubuntu 登录密码忘了怎么更改

环境: Win10 专业版 WSL2 如何 Ubuntu22.04 问题描述: WSL里的Ubuntu 登录密码忘了怎么更改 解决方案: 在WSL中的Ubuntu系统中,忘记了密码,可以通过以下步骤重置密码: 1.打开命令提示符或PowerShel…

[HTML]Web前端开发技术29(HTML5、CSS3、JavaScript )JavaScript基础——喵喵画网页

希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的很重要! 目录 前言 上一节的课后练习

Stable Diffusion 3重磅发布

刚不久,Stability AI发布了Stable Diffusion 3.0,这一版本采用了与备受瞩目的爆火Sora相同的DiT架构。通过这一更新,画面质量、文字渲染以及对复杂对象的理解能力都得到了显著提升。由于这些改进,先前的技术Midjourney和DALL-E 3在…

【Vue3】‘vite‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。

问题 今天拿到别人项目的时候,我平时比较习惯用pnpm,我就使用pnpm i先下载依赖包,下载完成后,启动项目,就开始报以下错误! 但是当我执行pnpm i的时候,vite不应该就已经被我下载下来了吗 研究了…

vivo 基于 StarRocks 构建实时大数据分析平台,为业务搭建数据桥梁

在大数据时代,数据分析和处理能力对于企业的决策和发展至关重要。 vivo 作为一家全球移动互联网智能终端公司,需要基于移动终端的制造、物流、销售等各个方面的数据进行分析以满足业务决策。 而随着公司数字化服务的演进,业务诉求和技术架构有…

解密高并发系统设计:聊聊负载均衡算法

引言 随着公司业务的飞速发展,以及业务的多样性,用户数会迅猛增长,系统的流量会越来越大。因此,大规模的并发用户访问会对系统的处理能力造成巨大的压力,系统必须要有足够强的处理能力才能应对。 这篇文章就来介绍一…

VMware使用虚拟机,开启时报错:无法连接虚拟设备 0:0,因为主机上没有相应的设备。——解决方法

检查虚拟机配置文件并确保物理设备已正确连接。 操作: 选中虚拟机,打开设置,点击CD/DVD。在连接处选择使用ISO镜像文件

被动收入 | Audible 联盟营销计划:如何每月赚取 5000 美元?

你是否正在寻求被动收入的方式,或者在你的网站或平台上寻求赚钱的方式?亚马逊的Audible Depot联盟营销计划是一个不错的选择。作为会员,可以向听众推广有声读物,并从中获得收益。每月有可能赚取高达5000美元的收入,现在…

【Vuforia+Unity】AR04-地面、桌面平面识别功能(Ground Plane Target)

不论你是否曾有过相关经验,只要跟随本文的步骤,你就可以成功地创建你自己的AR应用。 官方教程Ground Plane in Unity | Vuforia Library 这个功能很棒,但是要求也很不友好,只能支持部分移动设备,具体清单如下: 01.Vuforia的地面识别功能仅支持的设备清单: Recommended…

【MySQL】MySQL从0到0.9 - 持续更新ing

MySQL SQL 基础 DDL 语句 show databases; show tables; desc table_name; # 获取表信息 show create table 表名; // 查询指定表的建表语句 数据类型 char(10) 不满10个会用空格填充,性能好一点 varchar(10) 变长字符串,性能差一点 CREATE TABLE tabl…

数据库-MySQL-01

这里写目录标题 数据库开发-MySQL首先来了解一下什么是数据库。1. MySQL概述1.1 安装1.1.1 版本1.1.2 安装1.1.3 连接1.1.4 企业使用方式(了解) 1.2 数据模型1.3 SQL简介1.3.1 SQL通用语法1.3.2 分类 2. 数据库设计-DDL2.1 项目开发流程2.2 数据库操作2.2.1 查询数据库2.2.2 创…

从SDRAM到DDR的变化

1、结构概述 在此之前,曾经通过一篇文章从SDRAM的内部芯片框图出发,分析过SDRAM的功能实现,本文开始继续分析DDR、DDR2、DDR3的芯片内部框图,从而认识他们各自的区别,便于后续使用。 下图时镁光的128Mb的SDRAM内存芯片…

大学生多媒体课程学习网站thinkphp+vue

开发语言:php 后端框架:Thinkphp 前端框架:vue.js 服务器:apache 数据库:mysql 运行环境:phpstudy/wamp/xammp等开发背景 (一) 研究课程的提出 (二)学习网站的分类与界定…

RabbitMq:RabbitMq 主从镜像模式②

一、模式思想 所有的技术设计思想,基本都在两点上下功夫:1. 生产力上 2. 稳定上 二、集群模式 今天又有人问起来rabbitmq的高可用方式,因为和常见的主从模式有点区别,所以就记录一下。 rabbitmq集群的镜像队列提供了更高级的主从…

数字化转型导师坚鹏:数据安全法解读与政府数字化转型

网络安全法、数据安全法、个人信息保护法解读与政府数字化转型 课程背景: 很多机构存在以下问题: 不清楚网络安全法、数据安全法、个人信息保护法立法背景? 不知道如何理解网络安全法、数据安全法、个人信息保护法政策? 不…