蓝桥杯电子类单片机提升三——NE555

news2025/1/12 6:44:06

目录

单片机资源数据包_2023

一、NE555和定时器工作模式

1.NE555的介绍

2.定时器的计数模式

二、NE555频率读取代码的实现

1.定时器0初始化

2.通过读取TH0和TL0来读取频率 

3.通过中断读取频率

三、完整代码演示

通过读取TH0和TL0来读取频率

main.c

通过中断读取频率

main.c


前言
关于蓝桥杯比赛时会提供的资料前几篇都有提到,这里就不在赘述了,只放一个下载链接:

单片机资源数据包_2023

除了基础部分的按键、LED灯,数码管扫描,还有温度传感器,AD/DA转化,EEPROM存储器,RTC之外,还有三个模块考试的时候可能会考,分别是超声波,NE555和串口。近几年的题也是越来越难,这三个模块也逐渐出现在了省赛的舞台上(当然如果进国赛了,这几个模块就都可能考了)。提升篇主要针对这三个模块进行介绍。

由于这三个模块比赛时不会提供底层代码,所以许多都需要咱们自己来完成,不同人写的代码,差异性可能会更大。此外这些代码会涉及到单片机运行的底层知识,关于单片机基础部分的内容,提升篇也会尽可能介绍一部分(当然如果你不会也没关系,文章会教你如何用stc生成或者查数据手册,就算不知道原理,小背一背也是能自己实现的)

一、NE555和定时器工作模式

这一章主要介绍一下NE555和单片机定时器有关的基础知识,当然,正如前边提到的,这些知识并不需要去背,在后面代码实现时,会教大家如何借助isp获取这些代码。

最近几年NE555也是和超声波一样,频繁出现在省赛考场上。

1.NE555的介绍

NE555是一款经典的集成电路,也被称为555定时器。555定时器在蓝桥杯板子上的主要作用是产生脉冲,让我们读取它的频率,真的是一个十分经典的集成电路,当然,蓝桥杯比赛不会考NE555该怎么连接电路,感兴趣的小伙伴可以自己查找一下555定时器的资料。

NE555由比较器、SR触发器和输出级组成。它通常有8个引脚,包括正电源引脚(VCC)、负电源引脚(GND)、控制电压引脚(CV)、复位引脚(RESET)、输出引脚(OUT)、触发引脚(TRIG)、非控制触发引脚(THRES)、控制电压引脚(DIS)。

NE555有三种工作模式,可以被设置为工作在单稳态(单触发)模式、多稳态模式或脉冲生成模式。它的工作稳定性高,可以通过改变电阻和电容的数值来调节脉冲宽度、周期和频率。同时,NE555还具有较高的输出驱动能力,可以直接驱动大功率装置。

NE555广泛应用于定时器、频率分频器、频率多倍器、脉冲宽度调制、脉冲位置调制、电压控制振荡器等各种电路中。它易于使用,功能强大,是电子爱好者和工程师常用的集成电路之一。

下图蓝桥杯原理图上的NE555电路:

我们只需要读取NET SIG引脚上电平的变化,我们可以通过P34引脚读取,因此在读取之前,我们需要使用跳线帽。将J13上的P34和NET SIG短接,如下图所示的两个引脚:

 刚才已经提到,读取NE555的信号,只需要读取其电平变化,也就是与NET 相连的P34引脚的电平变化即可。当然,选择P34引脚也是有原因的,通过查询stc15f2k60s2的引脚定义可知,P34的其中一个复用功能就是定时器0外部计数(引脚定义的内容有点多,关于P34的大概在stc15数据手册的第51页)这里也附上stc15的数据手册下载链接

stc15数据手册(点击查看或下载)
 

 前几篇文章已经提到,定时器不止有定时功能,还有计数功能,读取NE555,通俗点说就是要“记录电平变化次数”,这就用到定时器0的计数功能了。通过计数器记录电平在一段时间内的变化次数,就可以推算出1秒电平变化的次数,而1秒电平变化的次数就是频率了。

2.定时器的计数模式

通过配置定时器的TMOD寄存器,即可控制定时器的工作模式。我们需要使用定时器0记录NE555的电平变化,也就是需要使用定时器0的外部计数模式,此外定时器模式我们还是选择16位自动重载。

 由上图可知,我们需要将TMOD2置为1,使其处在外部计数模式,其他各位为0即可(定时器1初始化时,会自己在配置关于定时器1的模式)。也就是需要配置:

TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式

这样我们就可以用定时器0读取NE555的频率了。 

二、NE555频率读取代码的实现

 上文已经介绍了如何配置定时器的模式,接下来就是如何使用定时器读取NE555频率。主流的方法主要有两种,一种方法是是和读取超声波时间信息一样,将TH0和TL0置为0,过一段时间后读取TH0和TL0的值在经过换算就可以得到频率;另一种方法是将TH0和TL0都置为0xFF,同时允许中断,这样只要有一个脉冲过来,就会触发中断,只需要在中断服务函数里,写上频率++,每隔一段时间读取一次频率,并把频率清0,我们就可以读取到一段时间内有多少个脉冲,再算换成1s有多少个脉冲,这个值就是频率值。接下来会介绍这两种方法,在介绍这两中方法之前,我们需要配置定时器0,这里也先告诉大家定时器具体如何使用isp现成的代码进行配置。

1.定时器0初始化

其实,有了第一章的介绍,再小背一下代码,就能记住定时器0如何配置,但是isp已经提供了范例代码,现成的总是更香嘛。

与串口代码的类似,我们打开isp,找到范例程序里的外部中断0的范例程序

这串代码中,提供了一种外部计数的方法,具体代码如下:

/*---------------------------------------------------------------------*/
/* --- STC MCU Limited ------------------------------------------------*/
/* --- STC15F4K60S4 系列 T0扩展为外部下降沿中断举例--------------------*/
/* --- Mobile: (86)13922805190 ----------------------------------------*/
/* --- Fax: 86-0513-55012956,55012947,55012969 ------------------------*/
/* --- Tel: 86-0513-55012928,55012929,55012966-------------------------*/
/* --- Web: www.STCMCU.com --------------------------------------------*/
/* --- Web: www.GXWMCU.com --------------------------------------------*/
/* 如果要在程序中使用此代码,请在程序中注明使用了STC的资料及程序        */
/* 如果要在文章中应用此代码,请在文章中注明使用了STC的资料及程序        */
/*---------------------------------------------------------------------*/

//本示例在Keil开发环境下请选择Intel的8058芯片型号进行编译
//若无特别说明,工作频率一般为11.0592MHz


#include "reg51.h"
#include "intrins.h"

//-----------------------------------------------

sfr P0M1 = 0x93;
sfr P0M0 = 0x94;
sfr P1M1 = 0x91;
sfr P1M0 = 0x92;
sfr P2M1 = 0x95;
sfr P2M0 = 0x96;
sfr P3M1 = 0xb1;
sfr P3M0 = 0xb2;
sfr P4M1 = 0xb3;
sfr P4M0 = 0xb4;
sfr P5M1 = 0xC9;
sfr P5M0 = 0xCA;
sfr P6M1 = 0xCB;
sfr P6M0 = 0xCC;
sfr P7M1 = 0xE1;
sfr P7M0 = 0xE2;

sfr AUXR = 0x8e;                    //辅助寄存器
sbit P10 = P1^0;

//-----------------------------------------------
//中断服务程序
void t0int() interrupt 1            //中断入口
{
    P10 = !P10;                     //将测试口取反
}

void main()
{
    P0M0 = 0x00;
    P0M1 = 0x00;
    P1M0 = 0x00;
    P1M1 = 0x00;
    P2M0 = 0x00;
    P2M1 = 0x00;
    P3M0 = 0x00;
    P3M1 = 0x00;
    P4M0 = 0x00;
    P4M1 = 0x00;
    P5M0 = 0x00;
    P5M1 = 0x00;
    P6M0 = 0x00;
    P6M1 = 0x00;
    P7M0 = 0x00;
    P7M1 = 0x00;

    AUXR = 0x80;                    //定时器0为1T模式
    TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式
    TH0 = TL0 = 0xff;               //设置定时器0初始值
    TR0 = 1;                        //定时器0开始工作
    ET0 = 1;                        //开定时器0中断

    EA = 1;

    while (1);
}

 我们现在只需要从中“提取”出我们想要的代码——定时器0初始化代码即可。初始化代码其实就是while(1)上边的那几行代码,我们写一个定时器0的初始化函数来包装一下那几行代码

void Time0_Init(void)
{
    AUXR = 0x80;                    //定时器0为1T模式
    TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式
    TH0 = TL0 = 0xff;               //设置定时器0初始值
    TR0 = 1;                        //定时器0开始工作
    ET0 = 1;                        //开定时器0中断
}

如果需要定时器中断(前面提到的第二种读取NE555的方法),我们还需要加上中断服务函数,中断号为1.

void Timer0_Isr(void) interrupt 1
{
    
}

2.通过读取TH0和TL0来读取频率 

我们需要先将TH0和TL0置为0,过1s之后再来读取TH0和TL0的值,这样读取出来的值就是频率值,注意读取时需要先停止定时器,如何1s读取一次已经在第七届代码中介绍过了,这里不再赘述,这里的is_read_NE555为0时,每隔1s就会被置为1。由于定时器0用来读取NE555了,所以我们这里是开启了定时器1来完成数码管等的处理

unsigned int fre=0;//频率

void Time0_Init(void)
{
    AUXR = 0x80;                    //定时器0为1T模式
    TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式
    TH0 = TL0 = 0x00;               //设置定时器0初始值
    TR0 = 1;                        //定时器0开始工作
    //ET0 = 1;                        //开定时器0中断
}

void main()
{
    Time0_Init();
    Timer1_Init();
    EA=1;
    while(1)
    {
        if(is_read_NE555==1)//1s读取一次,这样读取到的值刚好是频率
        {
            is_read_NE555=0;
            TR0=0;//先暂停
            fre=TH0;//再读取
            fre<<=8;
            fre|=TL0;
            TH0=0;
            TL0=0;
            TR0=1;
            Nixie_num[0]=fre/10000%10;//数码管显示频率
            Nixie_num[1]=fre/1000%10;
            Nixie_num[2]=fre/100%10;
            Nixie_num[3]=fre/10%10;
            Nixie_num[4]=fre/1%10;
        }

    }
}

注意这里的fre必须使用unsigned int。

3.通过中断读取频率

接下来介绍第二种方式,现将TH0和TL0置为0xFF,这样检查到一个脉冲之后就会进入中断服务函数,再中断服务函数内将频率++,每隔1s读取一次频率并将频率置为0.

void Timer0_Isr(void) interrupt 1
{
    fre++;
}
void Time0_Init(void)
{
    AUXR = 0x80;                    //定时器0为1T模式
    TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式
    TH0 = TL0 = 0xFF;               //设置定时器0初始值
    TR0 = 1;                        //定时器0开始工作
    ET0 = 1;                        //开定时器0中断
}

void main()
{
    Time0_Init();
    Timer1_Init();
    EA=1;
    while(1)
    {
        if(is_read_NE555==1)
        {
            is_read_NE555=0;
            Nixie_num[0]=fre/10000%10;
            Nixie_num[1]=fre/1000%10;
            Nixie_num[2]=fre/100%10;
            Nixie_num[3]=fre/10%10;
            Nixie_num[4]=fre/1%10;
            fre=0;
        }
    }
}

三、完整代码演示

读取NE555其实很简单,但是需要提醒一点,P34和NE555相连的那个跳线帽用完记得拔下来,其他项目可能需要用到矩阵键盘,如果那个跳线帽忘记拔了会影响矩阵键盘的读取。

下面的代码是读取NE555频率并将其显示到数码管上

通过读取TH0和TL0来读取频率

main.c

#include <stc15.h>
#include "intrins.h"


code unsigned char Seg_Table[] =
{
0xc0, //0
0xf9, //1
0xa4, //2
0xb0, //3
0x99, //4
0x92, //5
0x82, //6
0xf8, //7
0x80, //8
0x90, //9
0xFF
};
unsigned char Led_Num=0xFF;
#define LED_ON(x)			Led_Num&=~(0x01<<x);P0=Led_Num;	P2|=0x80;P2&=0x9F;P2&=0x1F;
#define LED_OFF(x)		Led_Num|=0x01<<x;		P0=Led_Num;	P2|=0x80;P2&=0x9F;P2&=0x1F;
#define LED_OFF_ALL()	Led_Num=0xFF;				P0=0xFF;		P2|=0x80;P2&=0x9F;P2&=0x1F;

#define NIXIE_CHECK()	P2|=0xC0;P2&=0xDF;P2&=0x1F;
#define NIXIE_ON()		P2|=0xE0;P2&=0xFF;P2&=0x1F;

void Time0_Init(void);
void Timer1_Init(void);		//1毫秒@11.0592MHz

unsigned char Nixie_num[]={10,10,10,10,10,10,10,10};//数码管要显示的数据
unsigned char location=0;
unsigned int fre=0;//定义频率
bit is_read_NE555=0;//每隔1s读取一次
void main()
{
	Time0_Init();//注意定时器0的初始化一定要放在定时器1的前边,因为定时器0初始化代码是抄的,写的不够完备,初始化时会干扰定时器1
	Timer1_Init();
	EA=1;
	while(1)
	{
		if(is_read_NE555==1)
		{
			TR0=0;
			fre=TH0;
			fre<<=8;
			fre|=TL0;
			TH0=0;//TH0和TL0清零
			TL0=0;
			TR0=1;//重新开始计数
			is_read_NE555=0;//为了1s数的更精确,在重新开始计时之后,才重新开始数1s(其实影响不大)
			/*数码管显示读取到的数据*/
			Nixie_num[0]=fre/10000%10;
			Nixie_num[1]=fre/1000%10;
			Nixie_num[2]=fre/100%10;
			Nixie_num[3]=fre/10%10;
			Nixie_num[4]=fre/1%10;
		}
	}
}
unsigned int count_1s=0;//中间变量
void Timer1_Isr(void) interrupt 3
{
	P0=0x01<<location;NIXIE_CHECK();
	P0=Seg_Table[Nixie_num[location]];NIXIE_ON();
	
	if(++location==8)
		location=0;
	
	if(is_read_NE555==0)//is_read_NE555为0时
	{
		if(++count_1s>1000)
		{
			is_read_NE555=1;
			count_1s=0;
		}
	}
}

void Time0_Init(void)
{
	AUXR = 0x80;                    //定时器0为1T模式
	TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式
	TH0 = TL0 = 0x00;               //设置定时器0初始值
	TR0 = 1;                        //定时器0开始工作
	ET0 = 1;                        //开定时器0中断
}
void Timer1_Init(void)		//1毫秒@11.0592MHz
{
	AUXR |= 0x40;			//定时器时钟1T模式
	TMOD &= 0x0F;			//设置定时器模式
	TL1 = 0xCD;				//设置定时初始值
	TH1 = 0xD4;				//设置定时初始值
	TF1 = 0;				//清除TF1标志
	TR1 = 1;				//定时器1开始计时
	ET1 = 1;				//使能定时器1中断
}

通过中断读取频率

main.c

#include <stc15.h>
#include "intrins.h"


code unsigned char Seg_Table[] =
{
0xc0, //0
0xf9, //1
0xa4, //2
0xb0, //3
0x99, //4
0x92, //5
0x82, //6
0xf8, //7
0x80, //8
0x90, //9
0xFF
};
unsigned char Led_Num=0xFF;
#define LED_ON(x)			Led_Num&=~(0x01<<x);P0=Led_Num;	P2|=0x80;P2&=0x9F;P2&=0x1F;
#define LED_OFF(x)		Led_Num|=0x01<<x;		P0=Led_Num;	P2|=0x80;P2&=0x9F;P2&=0x1F;
#define LED_OFF_ALL()	Led_Num=0xFF;				P0=0xFF;		P2|=0x80;P2&=0x9F;P2&=0x1F;

#define NIXIE_CHECK()	P2|=0xC0;P2&=0xDF;P2&=0x1F;
#define NIXIE_ON()		P2|=0xE0;P2&=0xFF;P2&=0x1F;

void Time0_Init(void);
void Timer1_Init(void);		//1毫秒@11.0592MHz

unsigned char Nixie_num[]={10,10,10,10,10,10,10,10};//数码管要显示的数据
unsigned char location=0;
unsigned int fre=0;//定义频率
bit is_read_NE555=0;//每隔1s读取一次
void main()
{
	Time0_Init();//注意定时器0的初始化一定要放在定时器1的前边,因为定时器0初始化代码是抄的,写的不够完备,初始化时会干扰定时器1
	Timer1_Init();
	EA=1;
	while(1)
	{
		if(is_read_NE555==1)
		{
			is_read_NE555=0;
			/*数码管显示读取到的数据*/
			Nixie_num[0]=fre/10000%10;
			Nixie_num[1]=fre/1000%10;
			Nixie_num[2]=fre/100%10;
			Nixie_num[3]=fre/10%10;
			Nixie_num[4]=fre/1%10;
			fre=0;
		}
	}
}
unsigned int count_1s=0;//中间变量
void Timer1_Isr(void) interrupt 3
{
	P0=0x01<<location;NIXIE_CHECK();
	P0=Seg_Table[Nixie_num[location]];NIXIE_ON();
	
	if(++location==8)
		location=0;
	
	if(is_read_NE555==0)//is_read_NE555为0时
	{
		if(++count_1s>1000)
		{
			is_read_NE555=1;
			count_1s=0;
		}
	}
}
void Timer0_Isr(void) interrupt 1
{
	fre++;
}
void Time0_Init(void)
{
	AUXR = 0x80;                    //定时器0为1T模式
	TMOD = 0x04;                    //设置定时器0为16位自动重装载外部记数模式
	TH0 = TL0 = 0xFF;               //设置定时器0初始值
	TR0 = 1;                        //定时器0开始工作
	ET0 = 1;                        //开定时器0中断
}
void Timer1_Init(void)		//1毫秒@11.0592MHz
{
	AUXR |= 0x40;			//定时器时钟1T模式
	TMOD &= 0x0F;			//设置定时器模式
	TL1 = 0xCD;				//设置定时初始值
	TH1 = 0xD4;				//设置定时初始值
	TF1 = 0;				//清除TF1标志
	TR1 = 1;				//定时器1开始计时
	ET1 = 1;				//使能定时器1中断
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1451095.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

多模态基础---BERT

1. BERT简介 BERT用于将一个输入的句子转换为word_embedding&#xff0c;本质上是多个Transformer的Encoder堆叠在一起。 其中单个Transformer Encoder结构如下&#xff1a; BERT-Base采用了12个Transformer Encoder。 BERT-large采用了24个Transformer Encoder。 2. BERT的…

【Algorithms 4】算法(第4版)学习笔记 08 - 3.1 符号表

文章目录 前言参考目录学习笔记1&#xff1a;API1.1&#xff1a;遵循的规则1.2&#xff1a;ST 用例举例1.2.1&#xff1a;行为测试用例1.2.2&#xff1a;性能测试用例2&#xff1a;基本实现2.1&#xff1a;无序链表处理2.2&#xff1a;初级ST实现小结2.3&#xff1a;有序数组的…

Python 异常处理及程序调试

Python 是一门功能强大而又易于学习的编程语言&#xff0c;它提供了丰富的工具和库来帮助开发者编写高效、稳定的程序。然而&#xff0c;在编写复杂的应用程序时&#xff0c;错误和异常是难以避免的。本文将介绍 Python 中的异常处理机制以及程序调试技巧&#xff0c;帮助读者提…

Linux--编译器-gcc/g++使用

目录 前言 1.看一段样例 2.程序的翻译过程 1.第一个阶段&#xff1a;预处理 2.第二个阶段&#xff1a;编译 3.第三个阶段&#xff1a;汇编 4.第四个阶段&#xff1a;链接 3.程序的编译为什么是这个样子&#xff1f; 4. 关于编译器 5.链接&#xff08;动静态链接&#x…

Docker的常见命令以及命令别名

常见命令 命令说明docker pull拉取镜像docker push推送镜像到DockerRegistrydocker images查看本地镜像docker rmi删除本地镜像docker run创建并允许容器docker stop停止指定容器docker start启动指定容器docker restart重新启动容器docker rm删除指定容器docker ps查看容器do…

波奇学Linux:文件系统打开文件

从文件系统来看打开文件 计算机系统和磁盘交互的大小是4kb 物理内存的4kb&#xff0c;磁盘的4kb文件叫做页帧 磁盘数据块的以4kb为单位。 减少IO的次数&#xff0c;减少访问外设的次数--硬件 基于局部性的原理&#xff0c;预加载机制--软件 操作系统管理内存 操作系统对…

相机图像质量研究(19)常见问题总结:CMOS期间对成像的影响--Sensor Noise

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

2.13日学习打卡----初学RocketMQ(四)

2.13日学习打卡 目录&#xff1a; 2.13日学习打卡一.RocketMQ之Java ClassDefaultMQProducer类DefaultMQPushConsumer类Message类MessageExt类 二.RocketMQ 消费幂消费过程幂等消费速度慢的处理方式 三.RocketMQ 集群服务集群特点单master模式多master模式多master多Slave模式-…

使用Python生成二维码的完整指南

无边落木萧萧下&#xff0c;不如跟着可莉一起游~ 可莉将这篇博客收录在了&#xff1a;《Python》 可莉推荐的优质博主首页&#xff1a;Kevin ’ s blog 本文将介绍如何使用Python中的qrcode库来生成二维码。通过简单的代码示例和详细解释&#xff0c;读者将学习如何在Python中轻…

可变参数(c/c++)

目录 一、C语言版本 二、C的实现方法 2.1数据包 2.2sizeof...运算符 2.3可变参数模板的使用 2.4emplace_back() 有时候我们在编写函数时&#xff0c;可能不知道要传入的参数个数&#xff0c;类型 。比如我们要实现一个叠加函数&#xff0c;再比如c语言中的printf,c中的emp…

QObject 的拷贝构造和赋值操作

QObject中没有提供一个拷贝构造函数和赋值操作符给外界使用&#xff0c;其实拷贝构造和赋值的操作都是已经声明了的&#xff0c;但是它们被使用了Q_DISABLE_COPY () 宏放在了private区域。因此所有继承自QObject的类都使用这个宏声明了他们的拷贝构造函数和赋值操作符为私有。 …

算法沉淀——BFS 解决 FloodFill 算法(leetcode真题剖析)

算法沉淀——BFS 解决 FloodFill 算法 01.图像渲染02.岛屿数量03.岛屿的最大面积04.被围绕的区域 BFS&#xff08;广度优先搜索&#xff09;解决 Flood Fill 算法的基本思想是通过从起始点开始&#xff0c;逐层向外扩展&#xff0c;访问所有与起始点相连且具有相同特性&#xf…

Python六级考试笔记

Python六级考试笔记【源源老师】 六级标准 一、 掌握文件操作及数据格式化。 二、 掌握数据可视化操作。 三、 理解类与对象的概念&#xff0c;初步掌握类与对象的使用。 四、 掌握SQLite数据库基础编程。 五、 掌握简单的使用tkinter的GUI设计。 ​ 1. 文件操作 &#xff0…

深入了解社区店:定义、模式与优势

在当今的商业环境中&#xff0c;社区店正逐渐成为创业者们关注的热点。本文将以我的鲜奶吧店铺为例&#xff0c;深入探讨社区店的定义、模式和优势&#xff0c;为您提供最有价值的干货信息。 1、社区店的定义 社区店是指位于社区内或周边&#xff0c;以服务社区居民为主要目标…

shell脚本命令:mktemp和install

目录 一、mktemp命令 1、mktemp命令用法和格式 2、mktemp命令的实现原理 3、相关操作 3.1 创建临时文件或目录 3.2 指定临时文件名或目录名的后缀字符位数 3.3 指定临时文件或目录的父目录 3.4 指定临时文件或目录的后缀 4、实现文件独立的目录垃圾箱 二、install命令…

真假难辨 - Sora(OpenAI)/世界模拟器的技术报告

目录 引言技术报告汉译版英文原版 引言 Sora是OpenAI在2024年2月15日发布的世界模拟器&#xff0c;功能是通过文本可以生成一分钟的高保真视频。由于较高的视频质量&#xff0c;引起了巨大关注。下面是三个示例&#xff0c;在示例之后给出了其技术报告&#xff1a; tokyo-wal…

XMall 开源商城 SQL注入漏洞复现(CVE-2024-24112)

0x01 产品简介 XMall 开源电商商城 是开发者Exrick的一款基于SOA架构的分布式电商购物商城 前后端分离 前台商城:Vue全家桶 后台管理:Dubbo/SSM/Elasticsearch/Redis/MySQL/ActiveMQ/Shiro/Zookeeper等。 0x02 漏洞概述 XMall 开源商城 /item/list、/item/listSearch、/sys/…

2024年【广东省安全员C证第四批(专职安全生产管理人员)】考试试卷及广东省安全员C证第四批(专职安全生产管理人员)复审模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 广东省安全员C证第四批&#xff08;专职安全生产管理人员&#xff09;考试试卷是安全生产模拟考试一点通总题库中生成的一套广东省安全员C证第四批&#xff08;专职安全生产管理人员&#xff09;复审模拟考试&#xf…

【送码】【IOS付费榜92名】春节不打烊,功德加倍攒

整体效果概览图 船新玩法&#xff0c;换个姿势攒功德 竞品玩法 过于简单&#xff1a;都是敲敲&#xff0c;然后设置里换换木鱼样式、音色等 本APP玩法 功德上云&#xff1a;敲击之后&#xff0c;会将所积攒的功德上传至fo祖云端 功德可视化&#xff1a;每日功德、3D功德地…

Panalog 日志审计系统 sessiptbl.php 前台RCE漏洞复现

0x01 产品简介 Panalog是一款日志审计系统,方便用户统一集中监控、管理在网的海量设备。 0x02 漏洞概述 Panalog日志审计系统 sessiptbl.php接口处存在远程命令执行漏洞,攻击者可执行任意命令,接管服务器权限。 0x03 影响范围 version <= MARS r10p1Free 0x04 复现…