备战蓝桥杯---图论之最短路dijkstra算法

news2025/1/16 19:10:29

目录

先分个类吧:

1.对于有向无环图,我们直接拓扑排序,和AOE网类似,把取max改成min即可。

2.边权全部相等,直接BFS即可

3.单源点最短路

从一个点出发,到达其他顶点的最短路长度。

Dijkstra算法:用于一个节点到所有其他节点的最短路。(要求:不存在负权边,可以用于无向图)


先分个类吧

1.对于有向无环图,我们直接拓扑排序,和AOE网类似,把取max改成min即可

2.边权全部相等,直接BFS即可

3.单源点最短路

从一个点出发,到达其他顶点的最短路长度。

基本操作:松弛:d[u]+w<d[v],于是距离更改。

Dijkstra算法:用于一个节点到所有其他节点的最短路。(要求:不存在负权边,可以用于无向图)

具体过程:

1.开始之前,认为所有点都未计算,dis[]全部赋为极大值。

2.源点的dis[]=0;

3。计算与源点相邻的所有点的dis=map[s][v];

4.在还未算出最短路点的dis中选出最小一个点u,显然,因为不存在负权边,它的最短路就是dis.

5.对于与u相连的所有点v若dis[u]+map[u][v]比当前的dis小就松弛更新。

6.重复上述4,5操作。

正确性证明:

其实就是每一次贪心,显然,从源点开始的第一步得到的最短的路肯定就是最短路(到它的其他路肯定比它长)。

当我们把除源点外第一个确定的加入后,我们再用它去更新一下它连的点。

然后,我们选其中最小的点,它就是确定的。因为,要走到它,要么从那些没有确定最小路的点出发到它(因为这点是最小的点+无负权边,因此这样的点距离肯定更大),要么从已经确定的点上拓展出来,又因为他们不断地更新松弛(每一个确定最小路的点加入后,我们再用它去更新一下它连的点),所以我们可以保证在已经确定地点到最小的点的路径是最优的。因此,我们保证最小的点它就是确定的。

下面放一道模板题:

下面是AC代码(注意,无向边建图edge要2倍):

#include<bits/stdc++.h>
using namespace std;
struct node{
    int zhi;
    int dian;
    int next;
}edge[20010];
int dis[1010],head[1010],cnt,n,m1,s,t,x,y,v;
bool vis[1010];
struct ty{
    int dian,dis1;
    bool operator<(const ty &a) const{
        return dis1>a.dis1;
    }
};
void merge(int x,int y,int v){
    edge[++cnt].zhi=v;
    edge[cnt].dian=y;
    edge[cnt].next=head[x];
    head[x]=cnt;
}
priority_queue<ty> q;
int dij(int s,int t){
    q.push({s,0});
    while(!q.empty()){
        ty ck=q.top();
          q.pop();
        if(vis[ck.dian]==1) continue;
        vis[ck.dian]=1;
        for(int i=head[ck.dian];i!=-1;i=edge[i].next){
            int i1=edge[i].dian;
            if(vis[i1]==1) continue;
            if(dis[i1]>dis[ck.dian]+edge[i].zhi){
                dis[i1]=dis[ck.dian]+edge[i].zhi;
                 q.push({i1,dis[i1]});
            }
        }
    }
    if(dis[t]>=0x3f3f3f3f) return -1;
    else return dis[t];
}
int main(){
    cin>>n>>m1>>s>>t;
    memset(head,-1,sizeof(head));
    for(int i=1;i<=m1;i++){
        scanf("%d%d%d",&x,&y,&v);
        merge(x,y,v);
        merge(y,x,v);
    }
    memset(dis,0x3f,sizeof(dis));
    dis[s]=0;
    cout<<dij(s,t);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1450292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vmware workstation群晖虚拟机vmdk文件导出

为了防止群晖虚拟机中整个挂掉&#xff0c;里面的文件导不出来&#xff0c;尝试直接从vmdk中获取内容。 1、想采用diskgenius去读取文件&#xff0c;发现volume1是空的。只能读取群晖的系统文件。 2、选择另一个linux系统的虚拟机&#xff0c;选择对应的vmdk 3、如果有文件管理…

Python slice函数

在Python编程中&#xff0c;slice&#xff08;切片&#xff09;操作是一种强大且灵活的方式&#xff0c;用于从序列&#xff08;如列表、元组、字符串等&#xff09;中获取子序列。通过切片操作&#xff0c;可以轻松地提取序列中的一部分&#xff0c;进行遍历、修改、复制等操作…

springboot185基于vue.js的客户关系管理系统(crm)的设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

C语言学习day13:嵌套循环+练习题(时钟+乘法表)

嵌套循环通常是外面一层for循环&#xff0c;里面n层for循环 代码&#xff1a; int main1601() {//外层执行一次&#xff0c;内层执行一周for (int i 0; i < 5; i){for (int j 0; j < 5; j){printf("i%d,j%d\n",i,j);}}system("pause");return EX…

每日一练:LeeCode-98、 验证二叉搜索树【二叉搜索树+DFS】

本文是力扣LeeCode-98、 验证二叉搜索树【二叉搜索树DFS】】 学习与理解过程&#xff0c;本文仅做学习之用&#xff0c;对本题感兴趣的小伙伴可以出门左拐LeeCode。 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&am…

Editing While Playing 使用 Easyx 开发的 RPG 地图编辑器 tilemap eaitor

AWSD移动画布 鼠标右键长按拖拽 鼠标左键长按绘制 可以边拖拽边移动画布边绘制。 F1 导出 DLC F2 导入DLC author: 民用级脑的研发记录 1309602336qq.com 开发环境&#xff1a; 内置 easyx 的 devc 5.11 或者 VS 2022 TDM GCC 4.9.2 64-bit c11及以上都可运行 windows 环境运行…

[BIZ] - 1.金融交易系统特点

1. 典型数据汇总 数据 说明 新增数据量(条/天) Qps(条/s) 消息大小(Byte) 实时性 可丢失性 可恢复性 实时行情 1.使用场景&#xff1a;交易&#xff0c;报价&#xff0c;策略验证&#xff1b; 2.冷热分离&#xff1a;彭博行情/其他行情&#xff1b;黄金&期货行情/…

node+vue3+mysql前后分离开发范式——实现对数据库表的增删改查

文章目录 ⭐前言⭐ 功能设计与实现💖 node后端操作数据库实现增删改查💖 vue3前端实现增删改查⭐ 效果⭐ 总结⭐ 结束⭐结束⭐前言 大家好,我是yma16,本文分享关于 node+vue3+mysql前后分离开发范式——实现对数据库表的增删改查。 技术选型 前端:vite+vue3+antd 后端:…

编程语言的实际应用场景(C语言场景)

从应用范围上来说&#xff0c;这些编程语言大致可以分为两种&#xff1a; 一种是专用型语言&#xff0c;也就是针对某个特定领域而设计出来的语言&#xff1b;另一种是通用型语言&#xff0c;它们可以开发多种类型的应用程序&#xff0c;而不是局限在某个特定的领域。 专用型…

[职场] 投资顾问是做什么? #知识分享#其他#微信

投资顾问是做什么&#xff1f; 投资顾问是指专门从事于提供投资建议而获薪酬的人士&#xff0c;它是投资服务中非常重要的角色。投资顾问&#xff0c;有广义和狭义之分。广义的投资顾问&#xff0c;可以是指为金融投资、房地产投资、商品投资等各类投资领域提供专业建议的专业人…

UI文件原理

使用UI文件创建界面很轻松很便捷&#xff0c;他的原理就是每次我们保存UI文件的时候&#xff0c;QtCreator就自动帮我们将UI文件翻译成C的图形界面创建代码。可以通过以下步骤查看代码 到工程编译目录&#xff0c;一般就是工程同级目录下会生成另一个编译目录&#xff0c;会找到…

QT 工具栏 状态栏 停靠部件 核心部件

添加/删除工具栏 删除工具栏方法和删除菜单栏方法一样&#xff0c;不过工具栏可以有多个&#xff0c;所以每次右键MainWindow对象&#xff0c;都可以看到添加工具栏的选项。 工具栏添加动作 新添加的QAction对象会在动作编辑器里找到&#xff08;Action Editor&#xff09;&a…

算法之贪心

1.部分背包问题 代码1&#xff1a; 代码2&#xff1a; 但如果金币不能分割&#xff0c;那贪心就不是最优解&#xff0c;正确的做法是搜索或动态规划。 2.排队接水 3.在规定时间内参加最多的比赛 4.合并果子 使用memset初始化int数组时&#xff0c;第二个参数如果是0&#xff0…

vscode运行C/C++时候cmd.exe界面显示

写了一些命令行传参的程序&#xff0c;需要终端输入参数&#xff0c;默认是输出结果显示在它自己的终端界面 Code-runner: Run In Terminal 打勾就行 效果&#xff1a;

平时积累的FPGA知识点(6)

平时在FPGA群聊等积累的FPGA知识点&#xff0c;第六期&#xff1a; 1 万兆网接口&#xff0c;发三十万包&#xff0c;会出现掉几包的情况&#xff0c;为什么&#xff1f; 原因&#xff1a;没做时钟约束&#xff0c;万兆网接口的实现&#xff0c;本质上都是高速serdes&#xf…

Vue源码系列讲解——模板编译篇【二】(整体运行流程)

目录 1. 整体流程 2. 回到源码 3. 总结 1. 整体流程 上篇文章中我们说了&#xff0c;在模板解析阶段主要做的工作是把用户在<template></template>标签内写的模板使用正则等方式解析成抽象语法树&#xff08;AST&#xff09;。而这一阶段在源码中对应解析器&…

跟着pink老师前端入门教程-day26

一、计算机编程基础 &#xff08;一&#xff09;编程语言 1、编程 编程&#xff1a;就是让计算机为解决某个问题而使用某种程序设计语言编写程序代码&#xff0c;并最终得到结果的过程。 计算机程序&#xff1a;就是计算机所执行的一系列的指令集合&#xff0c;而程序全部…

黑色响应式全屏滚动主页源码

html5黑色大气的个人博客全屏滚动个人主页源码下载&#xff0c;右键记事本即可修改。HTMLJSCSS https://wfr.lanzout.com/iFmRe1o7csyh

蓝桥杯电子类单片机提升二——串口发送与接收

目录 单片机资源数据包_2023 一、串口收发数据的介绍 1.波特率&#xff08;Baud Rate&#xff09; 2.帧格式 3.SBUF寄存器&#xff08;Serial Buffer&#xff09; 4.中断处理 二、如何从stc-isp获取串口收发数据的代码 1.代码的获取 2.代码的修改 1&#xff09;第一步…

打字侠网站,提供免费的双拼打字练习

在当今信息时代&#xff0c;电脑已成为人们生活、学习和工作不可或缺的一部分。随着电脑的普及和广泛应用&#xff0c;打字成了一项必备的技能&#xff0c;尤其是对于从事编程和写作等工作的人来说甚至更为重要。而要想提高打字速度和准确度&#xff0c;良好的打字练习是必不可…