智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助

news2025/1/11 18:36:33

今天分享的是智能汽车系列深度研究报告:《智能汽车行业产业研究报告:4D成像毫米波雷达—自动驾驶最佳辅助》。

(报告出品方:开源证券)

报告共计:43

视觉感知最佳辅助——4D 成像毫米波雷达

感知是自动驾驶的首要环节,高性能传感器必不可少

感知环节负责对侦测、识别、跟踪目标,是自动驾驶实现的第一步。自动驾驶 的实现,首先要能够准确理解驾驶环境信息,需要对交通主体、交通信号、环境物 体等信息进行有效捕捉,根据实时感知的环境信息,自动驾驶系统得以完成接下来 的决策、规划与控制等环节。传感器的性能会直接影响到感知信息的质量,目前广 泛搭载的传感器有摄像头、激光雷达、毫米波雷达、超声波雷达等。

特斯拉的视觉感知方案推动自动驾驶行业进入新的篇章。2021 年,特斯拉使用 Transformer 算法构建 BEV(Bird’s Eye-View, 鸟瞰图)空间,解决了传统视觉感知 的深度探测难点,从而通过视觉也可以进行较为准确的距离估计;同时, Transformer 算法更契合多个传感器融合,可拓展性更强。2022 年,特斯拉使用基 于 BEV+Transformer 和占用网络,形成对外部 3D 空间的还原,对通用障碍物感知能力进一步增强。特斯拉依靠摄像头进行感知的 FSD 功能已经能够实现近乎对全部 驾驶场景的覆盖,累计行驶里程呈指数型增长。

特斯拉重新使用毫米波雷达辅助摄像头来提升感知能力。2021 年特斯拉放弃使 用毫米波雷达,集中资源进行视觉感知能力的提升。2022 年 2 月,马斯克坦言只有 非常高分辨率的雷达才有意义,将取消毫米波雷达的原因指向“分辨率不足”;同 年 6 月,特斯拉向美国联邦通信委员会(FCC)注册一款全新高分辨率雷达设备。 根据汽车之心公众号,2023 年 2 月,国外博主 Greentheonly 曝光特斯拉全新的计算 平台 HW4.0 为毫米波雷达预留了接口;同年 6 月,该博主又放出特斯拉新毫米波雷达的实物图。综合推断,特斯拉将要搭载的新款毫米波雷达将是具有高分辨率的 4D 成像毫米波雷达。4D 成像毫米波雷达具有诸多优良特性,能够更好地辅助视觉感知方案。

毫米波雷达具有“全天候性质”,但存在分辨率不足的问题

毫米波雷达通过调制、收发、信号处理进行障碍物的感知。毫米波是电磁波, 其频段在 30-300GHz 之间,属于“极高频”,抗环境噪声干扰能力强;毫米波波长 在 1-10 毫米之间,与波长通常为数百至上千纳米的激光相比,它的波长更长,具备传输距离远、绕射能力强、穿透性更好等特点。工作在毫米波波段的雷达称为毫米波雷达,在自动驾驶领域广泛应用。

毫米波雷达主要由雷达前端收发模块、数字信号处理单元以及接口模块组成。 雷达前端收发模块进行毫米波信号的调制、发射与接收,包括天线阵列、射频前端、 中频电路、模数转换器;数字信号处理单元进行信号处理与数据处理,包括 DSP (数字信号处理器)、MCU(微控制单元)或 FPGA(现场可编程门阵列)等;接口模块负责数据通信以及与其他系统的集成。毫米波半导体技术已经比较成熟,已经在自动驾驶车辆中广泛应用。

信号收发与信号处理是毫米波雷达运行的重点环节。毫米波雷达工作流程如图 7 所示:(1)首先射频发射器产生电磁波信号并且将之发射,信号到达目标物体; (2)物体反射或者散射信号形成回波信号,接收器接收回波信号;(3)混频器将 回波信号与原始信号混合,经过滤波器进行滤波,得到中频信号(实际是雷达发射信号与回波信号的频率差,包含有物体的位置、速度等信息);(4)中频信号输入到处理后端进行调制解调、FFT(Fast Fourier Transform,快速傅里叶变换)等算法处理,提取目标信息并进行分析,实现目标检测、距离测量、速度测量、方位估计; (5)最终将结果输出以进行后续感知处理。

毫米波雷达通常调制 FMCW(调频连续波)波形,能够同时测速、测距。多 普勒效应是指物体发射的波长会因为相对运动而产生变化,例如火车汽笛声在驶向 我们时会更加高亮,是因为此时我们接受到的汽笛声波波长变短,频率增加,因而 可以被用来测速。毫米波雷达通常是 FMCW(调频连续波)雷达,FMCW 是连续 的频率调制,频率会线性增加与减小,根据这一特性,雷达能够有效从 FMCW 的 回波信号变化中分离出时间与距离的信息,从而准确测算出障碍物的相对速度与距离。

毫米波雷达同时能够测算方位,识别多个物体,适用于车载领域。通过增加分离的天线数量,毫米波雷达能够根据回波信号阵列之间的相位差得到物体的方位信 息;通过对多个回波信号进行处理得到不同的中频信号,毫米波雷达也能够有效分 辨多个物体。毫米波雷达能够测距、测速、测向、分辨多个物体,且 FMCW 波形 的调制、处理等技术相对成熟,功耗小、成本低,使得毫米波雷达契合车载领域。

毫米波雷达具有多种优良特性,对智能驾驶不可或缺。(1)“全天候”:相对波 长为纳米级的光波,毫米波波长更长,能够轻易穿过比其波长小的障碍物,一般来 说,雨滴、雪花的平均直径均在 5mm 以下,因此毫米波雷达工作基本不受雨雪雾 等天气的影响,具有“全天候”的特点;(2)具备速度信息:基于毫米波的多普勒效 应,毫米波雷达可以获得高精度的速度信息,这对于自动驾驶感知至关重要;(3) 识别遮挡物体:毫米波信号具有多径效应,信号通过反射、漫反射、衍射、绕射等 方式,在一些场景下,能够检测遮挡物体。大陆集团曾提到基于其 ARS430 毫米波 雷达的经验,这类遮挡车辆大约在 40%的场景中可以被发现。当然其探测遮挡物体 的性能表现也基于一些条件,如道路表面情况、前车的位置、以及被遮挡车辆的位 置等。而算法对于此类场景的探测尤为重要,华为在其 4D 毫米波雷达发布会上也 着重提到了这一点。

摄像头与毫米波雷达能够形成感知系统上的优势互补。摄像头是被动感知传感 器,具有成本低、易于集成、语义信息丰富等特点,并且摄像头是数据带宽最高的 车载传感器之一,可以提供高分辨率图像与实时视觉信息,但是摄像头容易受到恶 劣天气、眩光等环境的影响,没有精确的物体深度信息与速度信息。毫米波雷达在摄像头所不足的方面可以提供有效补充,两类传感器融合则能以较低的成本实现性 能更好的自动驾驶感知。

传统毫米波雷达无法测高,限制其在自动驾驶中发挥更大的作用。传统毫米波 雷达只能探测距离、角度、速度三类信息,由于没有高程信息,限高杆、高架桥等 物体容易触发毫米波雷达障碍物反馈,因而实践中只能设定保留动态目标追踪结果 或降低毫米波雷达感知权重,导致日常使用中毫米波雷达基本无法识别静止物体。 例如特斯拉的辅助驾驶未识别到白色静止卡车导致相撞的事故,是由于摄像头没有分辨出白色车厢与天空的区别,同时毫米波雷达没有准确识别侧翻静止的货车。针 对此问题,毫米波雷达需要增加俯仰角的感知能力。

报告共计:43

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1448996.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决‘vue‘ 不是内部或外部命令,也不是可运行的程序(设置全局变量)

发现是没有执行: npm install -g vue/cli 但是发现还是不行 此时,我们安装了 Vue CLI,但是在运行 vue ui 命令时出现了问题。这通常是因为全局安装的 Vue CLI 的路径没有被正确地添加到系统的环境变量中。 可以尝试以下几种方法来解决这个问…

如何把华为手机上的数据转移到荣耀手机上?

方法/步骤 点击并进入华为手机(旧手机)的【手机克隆】应用,选择【这是旧设备】; 点击并进入荣耀手机(新手机)的【换机克隆】应用,选择【这是新设备】; 荣耀手机(新…

《VulnStack》ATTCK-1

title: 《VulnStack》ATT&CK-1 date: 2024-01-29 14:53:49 updated: 2024-02-14 18:55:49 categories: WriteUp:Cyber-Range excerpt: 主机发现、端口扫描,服务探测,操作系统探测、nmap 漏洞库扫描、网站首页信息泄露、msf 渗透与信息收集…

源码推荐:hello-algo @ github

github https://github.com/krahets/hello-algo 本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。全书采用动画图解,结构化地讲解数据结构与算法知识,内容清晰易懂,学习曲线平滑。算法源代码皆可一键运行,支…

【IDEA】新建Spring Initializr项目,选择java版本只有是17和21问题的解决方法

新建Spring Initializr项目时,选择java版本只有是17和21 2. 将https://start.spring.io修改为阿里云的服务器路径:https://start.aliyun.com 能够选择Java8、11等版本

【Linux笔记】动静态库的封装和加载

一、静态库的封装 我们在学习C语言阶段其实就已经知道一个可执行程序的形成过程分为预处理、编译、汇编、链接这四个阶段,而且也知道我们程序中使用的各种库其实是在链接的阶段加载的。 可我们那时候并不知道库是怎么被加载的,或者库是怎么形成的&…

项目访问量激增该如何应对

✨✨ 欢迎大家来到喔的嘛呀的博客✨✨ 🎈🎈希望这篇博客对大家能有帮助🎈🎈 目录 引言 一. 优化数据库 1.1 索引优化 1.2 查询优化 1.3 数据库设计优化 1.4 事务优化 1.5 硬件优化 1.6 数据库配置优化 二. 增加服务器资源…

监督学习:从数据中挖掘模式的引导

目录 前言1 定义2 举例说明3 回归问题4 分类问题结论 前言 监督学习是机器学习领域中的一种重要方法,通过给模型提供带有标签的训练数据,使其能够学习输入与输出之间的关系。这种学习方式在各个领域都有广泛的应用,从垃圾邮件过滤到医学诊断…

ClickHouse--08--SQL DDL 操作

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 SQL DDL 操作1 创建库2 查看数据库3 删除库4 创建表5 查看表6 查看表的定义7 查看表的字段8 删除表9 修改表9.1 添加列9.2 删除列9.3 清空列9.4 给列修改注释9.5 修…

【AI视野·今日CV 计算机视觉论文速览 第298期】Fri, 26 Jan 2024

AI视野今日CS.CV 计算机视觉论文速览 Fri, 26 Jan 2024 Totally 71 papers 👉上期速览✈更多精彩请移步主页 Daily Computer Vision Papers Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities Authors Yiyuan Zhang, Xiaohan …

ARP请求的构造过程

ARP请求的构造过程: ARP请求的构造: 当设备A(发起者)想要与设备B(目标)通信,但它只知道设备B的IP地址(例如,192.168.1.2),而不知道其MAC地址。设备…

OpenGL-ES 学习(4)---- OpenGL-ES 坐标体系

坐标体系 我们知道 OpenGL -ES 坐标系中每个顶点的 x,y,z 坐标都应该在 -1.0 到 1.0 之间,超出这个坐标范围的顶点都将不可见。 将一个物体(图像)渲染到屏幕上,通常经过将物体坐标转换为标准化设备坐标&am…

顺序表(上)

1.顺序表的概念 顺序表(Sequential List)是一种基本的数据结构,它是一种线性表的存储结构。线性表是一种数据元素的有限序列,元素之间存在顺序关系。 线性表:线性表( linearlist )是n个具有相…

PHP毕业设计图片分享网站76t17

图片分享网站主要是为了提高工作人员的工作效率和更方便快捷的满足用户,更好存储所有数据信息及快速方便的检索功能,对系统的各个模块是通过许多今天的发达系统做出合理的分析来确定考虑用户的可操作性,遵循开发的系统优化的原则,…

【树莓派系统的位数】

要区分 ARM 架构下载的版本是 32 位还是 64 位,可以执行以下步骤: 执行以下命令来检查 Raspberry Pi 的 CPU 类型: uname -m如果返回的结果是 aarch64,则表示您的 Raspberry Pi 是 64 位的 ARM 架构。如果返回的结果是 armv7l&a…

代码随想录 Leetcode134. 加油站

题目&#xff1a; 代码(首刷看解析 2024年2月15日&#xff09;&#xff1a; class Solution { public:int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {int curSum 0;int sum 0;int startIndex 0;for (int i 0; i < gas.size(); i)…

18 19 SPI接口的74HC595驱动数码管实验

1. 串行移位寄存器原理&#xff08;以四个移位寄存器为例&#xff09; 1. 通过移位寄存器实现串转并&#xff1a;一个数据输入端口可得到四位并行数据。 通过给data输送0101数据&#xff0c;那么在经过四个时钟周期后&#xff0c;与data相连的四个寄存器的输出端口得到了0101…

高德地图上绘制热力图的方法

百度地图和高德地图的JavaScript API都提供了热力图的绘制方法&#xff0c;都是将热力图作为新的图层&#xff0c;叠加到地图上。但是百度地图的经纬度体系与我们的经纬度存在偏差&#xff0c;高德的与我们相符&#xff0c;应当使用高德地图JavaScript API。 因为是JavaScript…

一个人被锁死在公司底层的根本原因

一、现代社会对员工角色的认知 随着经济全球化和科技进步,现代社会对员工的认知发生了深刻的变化。传统上,员工被视为公司的执行者和生产者,承担着重复性、机械性的工作。然而,随着知识经济和服务型经济的兴起,员工角色逐渐从“执行者”转变为“创造者”和“合作者”。员…

python-分享篇-五子棋

文章目录 代码效果 代码 """五子棋之人机对战"""import sys import random import pygame from pygame.locals import * import pygame.gfxdraw from checkerboard import Checkerboard, BLACK_CHESSMAN, WHITE_CHESSMAN, offset, PointSIZE 3…