【深度学习】“智能皮肤:深度学习驱动的‘智慧之眼‘应用如何革新皮肤病诊疗未来“

news2024/11/27 5:27:30

在一个不久的未来世界,医疗科技取得了惊人的突破。一款名为“智慧之眼”的神秘应用横空出世,它如同科幻小说中的神器,能够通过摄像头扫描皮肤病变,并借助深度学习技术迅速得出专业级别的诊断结果。这个革新性的故事始于一场科研马拉松,一群跨学科的研究者们汇集了全球范围内的皮肤病学数据,构建了一个前所未有的庞大数据库。
在这里插入图片描述

【科研团队紧张工作的场景】

在一间灯火通明的实验室中,研究人员们夜以继日地整理和标注着一张张皮肤病图像,这些图片包含了超过2000种不同的疾病类型,总量高达13万张,比以往任何同类研究的数据量都要大上十倍。他们深知,这海量的数据将是训练深度学习模型的关键,也是实现“智慧之眼”这一梦想的核心所在。

【回到主线】

经过数月的辛勤努力,科研团队利用TensorFlow和Keras框架构建了一款强大的深度学习模型,其核心代码片段如下:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten

# 假设已经准备好了预处理过的皮肤病图像数据集
num_classes = 2000  # 数据集中包含的皮肤病种类数量
input_shape = (224, 224, 3)  # 图像输入尺寸

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
# ... 添加更多的卷积层与全连接层以构建复杂的深度神经网络 ...
model.add(Flatten())
model.add(Dense(num_classes, activation='softmax'))  # 输出层,对应每一种皮肤病类别

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 使用大量皮肤病图像数据对模型进行训练...

随着模型的训练完成,“智慧之眼”智能手机应用终于诞生了。只需将手机镜头对准疑似病变的皮肤区域,这款应用就能立即分析并反馈出详细的诊断信息。

实时皮肤病变诊断

在阳光明媚的一天,用户玛丽亚在户外发现手臂上有一处不明皮肤变化,她立刻打开“智慧之眼”应用,通过手机摄像头对准患处进行拍照。
在这里插入图片描述
应用内置的高精度图像识别算法立即启动,利用预训练好的深度神经网络模型快速分析图片。这个模型是基于超过13万张皮肤病学图像和2000多种不同疾病的大规模数据库训练而成,具备强大的特征提取和分类能力。
在这里插入图片描述

智能识别与分类

拍摄完成后,“智慧之眼”应用会对照片中的皮肤病变区域进行精准定位,并依据其纹理、颜色、形状等特征,与数据库中的样本进行比对。
短短几秒钟内,应用就能给出初步的诊断结果,如:“您可能患有湿疹”,或者“根据图片判断,这可能是银屑病早期症状,请尽快就医以确认”。
在这里插入图片描述

个性化建议与后续处理:

除了提供准确的诊断信息外,“智慧之眼”还会根据诊断结果给予用户个性化的建议,比如指导使用合适的药膏或保湿产品,或是提醒用户应尽快预约专业皮肤科医生进行进一步检查。
对于需要紧急关注的严重病例,应用甚至能够直接连接到附近的医疗机构,帮助用户迅速安排就诊时间,从而确保患者得到及时救治。

持续学习与优化:

“智慧之眼”应用不断从用户的实际使用中收集反馈数据,这些新数据被用于更新和优化深度学习模型,使得诊断准确性随着时间和使用的增加而不断提升。
隐私保护与数据安全:

所有上传至服务器用于诊断的照片均经过加密处理,确保用户的个人隐私得到充分保护,同时严格遵守医疗数据保密规定,让每个用户都能安心使用这项创新服务。

模拟实现此功能的Python代码框架:


python
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.preprocessing.image import ImageDataGenerator

# 假设我们已经预处理好了皮肤病图像数据集
train_data_dir = 'virtual/dataset/training/skin_disease_images'
test_data_dir = 'virtual/dataset/testing/skin_disease_images'

# 数据增强以提高模型泛化能力,仿佛是让AI像婴儿一样从大量经验中学习
datagen = ImageDataGenerator(rescale=1./255, rotation_range=40,
                             width_shift_range=0.2, height_shift_range=0.2,
                             shear_range=0.2, zoom_range=0.2,
                             horizontal_flip=True, fill_mode='nearest')

# 加载训练集与测试集的数据
train_generator = datagen.flow_from_directory(train_data_dir, target_size=(224, 224),
                                               batch_size=32, class_mode='categorical')

test_generator = datagen.flow_from_directory(test_data_dir, target_size=(224, 224),
                                              batch_size=32, class_mode='categorical')

# 创建一个深度卷积神经网络模型,模仿皮肤科专家的诊断过程
#初始化一个顺序模型结构,意味着层将按添加顺序堆叠在一起。
model = Sequential() 
# 添加一个二维卷积层(Conv2D),用于从输入的皮肤病变图像中提取特征,设置32个大小为(3, 3)的过滤器,它们在224x224像素的RGB三通道图像上滑动并计算加权和,使用ReLU激活函数引入非线性以捕捉更复杂的模式,input_shape参数指定输入图像的尺寸结构。
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
# 添加最大池化层(MaxPooling2D)来降低数据维度并保留最重要的特征。这里的池化窗口大小为(2, 2)。
model.add(MaxPooling2D((2, 2)))
AI Chat
德天2018
Retry

TONGYI Lingma
python
# 添加第二个卷积层,使用64个3x3的过滤器以进一步提取图像特征,并通过ReLU激活函数引入非线性表达能力
model.add(Conv2D(64, (3, 3), activation='relu'))

# 在上一层卷积操作后进行最大池化,将特征图尺寸缩小为原来的一半,减少计算量并保持主要特征
model.add(MaxPooling2D((2, 2)))

# 添加第三个卷积层,使用128个3x3的过滤器继续深入提取图像特征,同样采用ReLU激活函数增强模型对复杂皮肤病变特征的识别能力
model.add(Conv2D(128, (3, 3), activation='relu'))

# 再次执行最大池化操作,进一步减小特征图尺寸并提炼关键信息
model.add(MaxPooling2D((2, 2)))

# 将多维的卷积特征展平为一维向量,以便接入全连接层
model.add(Flatten())

# 添加一个具有512个神经元的全连接层,使用ReLU激活函数提高模型的学习能力和泛化性能
model.add(Dense(512, activation='relu'))

# 最后添加一个与皮肤病种类数量相匹配的全连接输出层,使用softmax激活函数生成每个类别的概率分布,这里的'diseases'变量包含了所有要诊断的皮肤病种类列表
model.add(Dense(len(diseases), activation='softmax'))

# 编译并训练模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_generator, epochs=50, validation_data=test_generator)

# 使用模型进行新图片的诊断
# 定义一个诊断皮肤疾病的函数,该函数接收一个图像文件路径作为输入
def diagnose_skin_disease(image_path):
    # 加载并预处理图像,确保其符合模型输入的格式和大小要求
    img = load_and_preprocess_image(image_path)

    # 将单个图像样本扩展为一个批次(batch),以适应模型的输入格式,即在批量维度上添加轴(axis=0)
    img_batched = tf.expand_dims(img, axis=0)

    # 使用训练好的深度学习模型对图像进行预测,得到一个概率分布向量
    prediction = model.predict(img_batched)

    # 从预测结果中找到概率最高的疾病类别索引,对应于最大概率值所对应的类别
    diagnosis_index = np.argmax(prediction)

    # 根据索引从所有皮肤病种类列表'diseases'中取出实际的疾病名称作为诊断结果
    diagnosis = diseases[diagnosis_index]

    # 返回诊断结果,即最可能的皮肤病类型
    return diagnosis

# 在不久的将来,每个人都能轻易使用这一技术
smartphone_user = "Jane"
image_path = smartphone_user.take_picture_of_skin_condition()
diagnosis_result = diagnose_skin_disease(image_path)
print(f"Jane 的皮肤问题被诊断为:{diagnosis_result}")

随着这项技术的发展,“智慧之眼”应用逐渐普及,人们只需用手机拍下疑似皮肤病变的照片,就能立即获得准确的诊断结果。这不仅减少了医疗资源的占用,更使得罕见皮肤病也能得到及时且精准的识别。而类似这样的进步,在自动驾驶、语音识别等众多领域也在同步上演,共同构建起一个由人工智能驱动的全新世界。
在这里插入图片描述

一个全新的时代来临,每个人都能轻松获取专业的医疗建议,而不再受限于地域、时间或高昂的医疗费用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1448797.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Sentinel 流控-链路模式

链路模式 A B C 三个服务 A 调用 C B 调用 C C 设置流控 ->链路模式 -> 入口资源是 A A、B 服务 package com.learning.springcloud.order.controller;import com.learning.springcloud.order.service.BaseService; import org.springframework.beans.factory.annotatio…

ClickHouse--05--MergeTree 表引擎

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 MergeTree 系列表引擎前言MergeTree 系列表引擎 --功能MergeTree 系列表引擎 --种类 1.MergeTree1.1MergeTree 建表语句:1.2 MergeTree 引擎表目录解析查…

【AI视野·今日Robot 机器人论文速览 第七十八期】Wed, 17 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Wed, 17 Jan 2024 Totally 49 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Safe Mission-Level Path Planning for Exploration of Lunar Shadowed Regions by a Solar-Powered Rover Authors Olivier L…

第13讲我创建的投票列表实现

新建我创建的投票页面 {"path": "pages/createVoteList/createVoteList","style": {"navigationBarTitleText": "我创建的投票"}}个人中心页面,加下 点击 “我创建的投票”跳转列表页面 goVoteList:function(){u…

ChatGPT高效提问—prompt实践(教师助手)

ChatGPT高效提问—prompt实践(教师助手) 下面来看看ChatGPT在教育领域有什么用途。 首先设定ChatGPT的角色为高中教师助手。 输入prompt: ChatGPT输出: ​ 教师助手的角色已经设置完成。下面通过几种不同的情景演示如何使用。 1.1.1 制定…

PhP+vue企业原材料采购系统_cxg0o

伴随着我国社会的发展,人民生活质量日益提高。互联网逐步进入千家万户,改变传统的管理方式,原材料采购系统以互联网为基础,利用php技术,结合vue框架和MySQL数据库开发设计一套原材料采购系统,提高工作效率的…

编译原理实验2——自上而下语法分析LL1(包含去消除左递归、消除回溯)

文章目录 实验目的实现流程代码运行结果测试1(含公共因子)测试2(经典的ii*i文法,且含左递归)测试3(识别部分标识符) 总结 实验目的 实现自上而下分析的LL1语法分析器,给出分析过程 …

快速搭建PyTorch环境:Miniconda一步到位

快速搭建PyTorch环境:Miniconda一步到位 🌵文章目录🌵 🌳一、为何选择Miniconda搭建PyTorch环境?🌳🌳二、Miniconda安装指南:轻松上手🌳🌳三、PyTorch与Minic…

机器学习:ROC曲线笔记

ROC曲线(Receiver Operating Characteristic Curve)是一种用于评估二分类模型性能的图形化工具,主要用于展示在不同阈值(Threshold)下模型的真阳性率(True Positive Rate,TPR)和假阳…

洛谷C++简单题小练习day11—字母转换,分可乐两个小程序

day11--字母转换--2.14 习题概述 题目描述 输入一个小写字母&#xff0c;输出其对应的大写字母。例如输入 q[回车] 时&#xff0c;会输出 Q。 代码部分 #include<bits/stdc.h> using namespace std; int main() { char n;cin>>n;cout<<char(n-32)<…

STM32 7-8

目录 ADC AD单通道 AD多通道 DMA DMA转运数据 DMAAD多通道 ADC AD单通道 AD.c #include "stm32f10x.h" // Device header/*** brief 初始化AD所需要的所有设备* param 无* retval 无*/ void AD_Init(void) {RCC_APB2PeriphClockCmd(RCC_AP…

视觉slam十四讲学习笔记(四)相机与图像

理解理解针孔相机的模型、内参与径向畸变参数。理解一个空间点是如何投影到相机成像平面的。掌握OpenCV的图像存储与表达方式。学会基本的摄像头标定方法。 目录 前言 一、相机模型 1 针孔相机模型 2 畸变 单目相机的成像过程 3 双目相机模型 4 RGB-D 相机模型 二、图像…

【数据结构】链表OJ面试题4《返回链表入环的第一个结点》(题库+解析)

1.前言 前五题在这http://t.csdnimg.cn/UeggB 后三题在这http://t.csdnimg.cn/gbohQ 给定一个链表&#xff0c;判断链表中是否有环。http://t.csdnimg.cn/Rcdyc 记录每天的刷题&#xff0c;继续坚持&#xff01; 2.OJ题目训练 10. 给定一个链表&#xff0c;返回链表开始…

[缓存] - 1.缓存共性问题

1. 缓存的作用 为什么需要缓存呢&#xff1f;缓存主要解决两个问题&#xff0c;一个是提高应用程序的性能&#xff0c;降低请求响应的延时&#xff1b;一个是提高应用程序的并发性。 1.1 高并发 一般来说&#xff0c; 如果 10Wqps&#xff0c;或者20Wqps &#xff0c;可使用分布…

【JavaEE】_HTTP请求与响应

目录 1. HTTP协议 1.1 HTTP简介 1.2 Fiddler 2. HTTP请求 2.1 首行 2.2 请求头&#xff08;header&#xff09; 2.3 空行 2.4 正文&#xff08;body&#xff09; 3. HTTP响应 3.1 首行 3.2 响应头&#xff08;header&#xff09; 3.3 空行 3.4 正文&#xff08;bo…

如何在Django中使用分布式定时任务并结合消息队列

如何在Django中使用分布式定时任务并结合消息队列 如何在Django中使用分布式定时任务并结合消息队列项目背景与意义实现步骤1. 安装Celery和Django-celery-beat2. 配置Celery3. 配置Django-celery-beat4. 定义定时任务5. 启动Celery worker 和 beat6. Celery 指令7. 对接消息队…

精读Relational Embedding for Few-Shot Classification (ICCV 2021)

Relational Embedding for Few-Shot Classification (ICCV 2021) 一、摘要 该研究提出了一种针对少样本分类问题的新方法&#xff0c;通过元学习策略来学习“观察什么”和“在哪里关注”。这种方法依赖于两个关键模块&#xff1a;自相关表示&#xff08;SCR&#xff09;和交叉…

HDFS的超级用户

一. 解释原因 HDFS(Hadoop Distributed File System)和linux文件系统管理一样&#xff0c;也是存在权限控制的。 但是很不一样的是&#xff0c; 在Linux文件系统中&#xff0c;超级用户Superuser是root而在HDFS中&#xff0c;超级用户Superuser是启动了namenode的用户&#x…

软考 系统分析师系列知识点之信息系统战略规划方法(10)

接前一篇文章&#xff1a;软考 系统分析师系列知识点之信息系统战略规划方法&#xff08;9&#xff09; 所属章节&#xff1a; 第7章. 企业信息化战略与实施 第4节. 信息系统战略规划方法 7.4.6 战略栅格法 战略栅格&#xff08;Strategic Grid&#xff0c;SG&#xff09;法是…

【QT+QGIS跨平台编译】之四十:【gsl+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、GSL介绍二、GSL下载三、文件分析四、pro文件五、编译实践一、GSL介绍 GSL(GNU Scientific Library)是一个开源的数值计算库,用于提供一系列常用的数学函数和算法。它为科学计算和数据分析提供了高效、可靠的工具。 GSL库提供了丰富的功能,包括数值积分、数值…