509. 斐波那契数
较为简单
746. 使用最小花费爬楼梯
62. 不同路径
一开始写的时候被吓到了,但是发现听完一半之后再写还是比较容易的
对于我而言主要是找到逻辑,
class Solution {
public int uniquePaths(int m, int n) {
if (m <= 1 || n <=1){
return 1;
}
int[][] result = new int[m][n];
result[0][0] = 0;
result[1][0] = 1;
result[0][1] = 1;
for (int i = 0;i < m;i++){
for (int j = 0;j < n; j++){
if (i > 0 && j > 0){
result[i][j] = result[i][j-1] + result[i-1][j];
}else if (i == 0 && j > 0 && j!=1){
result[i][j] = result[i][j-1];
}else if (j == 0 && i > 0 && i!=1){
result[i][j] = result[i-1][j];
}
}
}
return result[m-1][n-1];
}
}
63. 不同路径 II
秒杀,和前者逻辑差不多,要注意初始化就好
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
if (m <= 1 || n <=1){
for (int i = 0;i < m; i++){
for (int j = 0;j <n; j++){
if (obstacleGrid[i][j] == 1){
return 0;
}
}
}
return 1;
}
int[][] result = new int[m][n];
if (obstacleGrid[0][0] == 1){
return 0;
}else{
result[0][0] = 0;
}
if (obstacleGrid[1][0] == 1){
result[1][0] = 0;
}else{
result[1][0] = 1;
}
if (obstacleGrid[0][1] == 1){
result[0][1] = 0;
}else{
result[0][1] = 1;
}
for (int i = 0;i < m;i++){
for (int j = 0;j < n; j++){
if (obstacleGrid[i][j] == 1){
result[i][j] = 0;
}else if (i > 0 && j > 0){
result[i][j] = result[i][j-1] + result[i-1][j];
}else if (i == 0 && j > 0 && j!=1){
result[i][j] = result[i][j-1];
}else if (j == 0 && i > 0 && i!=1){
result[i][j] = result[i-1][j];
}
}
}
return result[m-1][n-1];
}
}
别人的写法,比较nb
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
//如果在起点或终点出现了障碍,直接返回0
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
return 0;
}
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
}
}
return dp[m - 1][n - 1];
}
}
343. 整数拆分
再写吧。。累了