Pytorch学习03_TensorBoard使用02

news2024/11/30 14:34:06

Opencv读取图片,获得numpy型数据类型

复制图片的相对路径

目前这种type不适用,考虑用numpy类型

安装opencv,在pytorch环境下

pip install opencv-python 

导入numpy

import numpy  as np

 将PIL类型的img转换为 NumPy 数组

img_array=np.array(img)

HWC三通道

H:高度        W:宽度        C:通道

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image("test",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义

终端运行

tensorboard --logdir=logs --port=6007

点击蓝色链接

点击“IMAGES” 

来到

修改一下

使用另一张图片的路径,运行

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path="dataset/train/ants_image/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
writer.add_image("test",img_array,2,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

回到网站,进行刷新

刷新后

拖动滑轮进行图片查看

拖到左边后,可以看到之前的图片

更换标签

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
# image_path="dataset/train/ants_image/0013035.jpg"
image_path="dataset/train/ants_image/5650366_e22b7e1065.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

# writer.add_image("test",img_array,1,dataformats='HWC')
# writer.add_image("test",img_array,2,dataformats='HWC')
writer.add_image("train",img_array,1,dataformats='HWC')


# for i in range(100):
#     writer.add_scalar("y=2x",3*i,i)

writer.close()

运行后来到网站查看

参考

【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?p=9&share_source=copy_web&vd_source=be33b1553b08cc7b94afdd6c8a50dc5a

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1447536.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VC++ 绘制折线学习

win32 有三个绘制折线的函数; Polyline,根据给定点数组绘制折线; PolylineTo,除了绘制也更新当前位置; PolyPolyline,绘制多条折线,第一个参数是点数组,第二个参数是一个数组、指…

【教学类-48-04】202402013“天干地支 六十一甲子”.

背景需求: 2024年是甲辰龙年。 “辛亥革命”“甲午海战”"戊戌变法”都有天干地支的身影。 参观历史建筑,不少书法碑刻上都是用天干地支进行年代记名 所以我用Python来制作60一甲子的所有天干地支组合 60一甲子 天干地支的排序 作者:阿…

【教程】Kotlin语言学习笔记(一)——认识Kotlin(持续更新)

写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 【Kotlin语言学习】系列文章 第一章 《认识Kotlin》 文章目录 【Kotlin语言学习】系列文章一、Kotlin介绍二、学习路径 一、…

片上网络NoC(4)——直连拓扑

目录 一、前言 二、直连拓扑 三、总结 一、前言 本文中,我们将继续介绍片上网络中拓扑相关的内容,主要介绍直连拓扑,在此之前,我们已经介绍过了拓扑的指标,这将是继续阅读本文的基础,还没有了解相关内容…

GEE:CART(Classification and Regression Trees)回归教程(样本点、特征添加、训练、精度、参数优化)

作者:CSDN @ _养乐多_ 对于分类问题,这个输出通常是一个类别标签 ,而对于回归问题,输出通常是一个连续的数值。回归可以应用于多种场景,包括预测土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等。 本文将介绍在Google…

Spring Boot 笔记 012 创建接口_添加文章分类

1.1.1 实体类添加校验 package com.geji.pojo;import jakarta.validation.constraints.NotEmpty; import lombok.Data;import java.time.LocalDateTime;Data public class Category {private Integer id;//主键IDNotEmptyprivate String categoryName;//分类名称NotEmptypriva…

华为机考入门python3--(13)牛客13-句子逆序

分类:列表 知识点: 列表逆序(和字符串逆序是一样的) my_list[::-1] 题目来自【牛客】 def reverse_sentence(sentence): # 将输入的句子分割words sentence.split() # 将单词逆序排列 words words[::-1] # 将单词用空…

车载诊断协议DoIP系列 —— DoIP应用(Application)需求

车载诊断协议DoIP系列 —— DoIP应用(Application)需求 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一…

Java基于微信小程序的电子竞技信息交流平台

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

Java并发基础:DelayQueue全面解析!

内容概要 DelayQueue类专为处理延迟任务设计,它允许开发者将任务与指定的延迟时间关联,并在任务到期时自动处理,从而避免了不必要的轮询和资源浪费,此外,DelayQueue内部基于优先队列实现,确保最先到期的任…

MySQL数据库⑧_索引(概念+理解+操作)

目录 1. 索引的概念和价值 1.1 索引的概念 1.2 索引的价值 2. 磁盘的概念 2.1 磁盘的结构 2.2 操作系统与磁盘交互的基本单位 2.3 MySQL与磁盘交互的基本单位 3. 索引的理解 3.1 主键索引现象和推导 3.2 索引采用的数据结构:B树 3.3 聚簇索引和非聚簇索引…

Java加密秘钥

1. Java加密秘钥 您可加密信息,使其避免未经授权的访问。您可通过Java密码技术对数据进行编码来加密。密码技术包含各种用于对网络上发送的数据进行编码和译码的加密秘钥。Java密码架构(JCA)和Java密码扩展(JCE)可让您在Java平台上执行密码。 Java加密秘钥是一连串控制数…

Vue--》深入学习Tailwind CSS掌握优雅而高效的前端样式开发

Tailwind CSS是一个非常强大且灵活的CSS框架,适用于开发者希望高度定制化界面样式的项目。今天博主就 Tailwind CSS 做一个简单介绍以及案例讲解,争取读者阅读文章后入门。 仅靠一篇文章博主也不可能将Tailwind CSS所有内容讲解的面面俱到,在…

【开源】JAVA+Vue+SpringBoot实现毕业生追踪系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 登陆注册模块2.2 学生基本配置模块2.3 就业状况模块2.4 学历深造模块2.5 信息汇总分析模块2.6 校友论坛模块 三、系统设计3.1 用例设计3.2 实体设计 四、系统展示五、核心代码5.1 查询我的就业状况5.2 初始化就业状况5.…

线性代数的本质 2 线性组合、张成的空间、基

基于3Blue1Brown视频的笔记 一种新的看待方式 对于一个向量,比如说,如何看待其中的3和-2? 一开始,我们往往将其看作长度(从向量的首走到尾部,分别在x和y上走的长度)。 在有了数乘后&#xff0…

第二节:轻松玩转书生·浦语大模型趣味Demo

参考教程:https://github.com/InternLM/tutorial/blob/main/helloworld/hello_world.md InternLM-Chat-7B 智能对话 Demo 终端运行 web demo 运行 1.首先启动服务: cd /root/code/InternLM streamlit run web_demo.py --server.address 127.0.0.1 --…

基于matlab的密度散点图绘制

1. 什么是密度散点图? 密度散点图就是在普通散点图的基础上,基于样本点一定范围的样本数计算该样本点的密度,以不同的颜色来显示样本点密度的大小,这样能够直观的显示出数据的空间聚集情况,如下图分别是二维和三维密度…

2024年世界听力日活动的主题是什么?

改变思维模式:让所有人的耳和听力保健成为现实! Let’s make ear and hearing care a reality for all! 据 世界卫生组织 报道:在全球范围内,超过 80% 的耳和听力保健需求仍未得到满足 ; 未得到解决的听力损失每…

「计算机网络」数据链路层

数据链路层的地位:网络中的主机、路由器等都必须实现数据链路层信道类型 点对点信道:使用一对一的点对点通信方式广播信道 使用一对多的广播通信方式必须使用专用的共享信道协议来协调这些主机的数据发送 使用点对点信道的数据链路层 数据链路和帧 链…

ubuntu下如何查看显卡及显卡驱动

ubuntu下如何查看显卡及显卡驱动 使用nvidia-smi 工具查看 查看显卡型号nvida-smi -L $ nvidia-smi -L GPU 0: NVIDIA GeForce RTX 3050 4GB Laptop GPU (UUID: GPU-4cf7b7cb-f103-bf56-2d59-304f8996e28c)当然直接使用nvida-smi 命令可以查看更多信息 $ nvidia-smi Mon Fe…