AI大模型学习笔记之四:生成式人工智能(AIGC)是如何工作的?

news2024/11/24 6:09:33

OpenAI 发布 ChatGPT 已经1年多了,生成式人工智能(AIGC)也已经广为人知,我们常常津津乐道于 ChatGPT 和 Claude 这样的人工智能系统能够神奇地生成文本与我们对话,并且能够记忆上下文情境。

GPT-4

Midjunery和DALL·E 这样的AI绘图软件可以通过Prompt 输入文本提示生成多张令人惊艳的美图,看起来相当神奇。

Midjunery V6

但是,你有没有想过,生成式人工智能(AIGC)究竟是怎么运作的呢?在这篇文章里,我们就来简单了解一下生成式人工智能技术(AIGC)的基本原理,看看它到底能做些什么,还有啥时候你可能不太想依赖它。

一、从有监督学习到生成式人工智能

大多数传统类型的人工智能(如判别式人工智能)都是为了对现有数据进行分类或归类而设计的。相反,生成式人工智能模型的目标是生成前所未见的完全原创的人工制品。

在今天,有监督学习(Supervised Learning)和生成式人工智能(Generative Artificial Intelligence)是当今人工智能领域的两个最重要领域,其重点是创建算法和模型,以便从训练数据集生成与模式相似的新的真实数据。
在这里插入图片描述

生成式人工智能模型经过训练,可以从庞大的数据集中学习其中的潜在模式,并使用该知识生成与原始数据集相似但不相同的全新样本或数据。

在这里插入图片描述

例如,在人类或者猫狗的图像数据集上训练的生成式人工智能算法可以生成全新的人类图像或者猫和狗的图像,这些图像看起来与原始数据集中的图像相似,但不是精确的复制品。因此,"生成 "一词被用来描述它。

生成式人工智能(Generative AI)的涌现标志着人工智能技术的重大进步。

1.1 有监督学习的局限性与挑战

在2010年左右,随着大规模有监督学习逐渐成为主流,人们开始寄希望于大数据能够为AI模型的性能带来质的飞跃。

然而,从那时起,AI 科学家们开始观察到一个令人困扰的问题:尽管我们有大量的数据可供使用,但即使我们向小型AI模型继续提供更多的数据,它们的性能改善并不明显。例如,在构建语音识别系统时,尽管AI接受了数千乃至数十万小时的训练数据,但其准确性与仅使用少量数据的系统相比并无显著提高。这一现象引发了人们对监督学习有效性的怀疑。

监督学习的基本流程

进一步的研究表明,仅靠大规模监督学习和大数据集并不能无限地提升 AI 模型的准确性。

这是因为:

  • 首先,大规模数据集可能存在着标签噪声或错误,导致模型学习到了不准确的模式。

  • 此外,数据可能存在偏差,导致模型在面对新颖数据时表现不佳。

  • 其次,随着数据量的增加,模型的容量可能变得不足以有效地利用数据。即使有更多的数据可用,模型也可能因其结构或参数的限制而无法充分利用这些信息。

  • 再次,大规模监督学习通常依赖于端到端的训练方法,其中模型直接从输入到输出进行训练。这种方法可能会导致模型在理解数据背后的真实机制方面缺乏深入的抽象能力,从而限制了其性能。

1.2 生成式人工智能的出现

随着人们对监督学习的限制和挑战有了更深入的认识,研究人员开始寻求其他方法来克服这些问题。
在这个过程中,生成式人工智能(Generative Artificial Intelligence)应运而生,并逐渐成为人工智能领域的重要组成部分。

生成式人工智能(AIGC)与传统的机器学习算法不同,它不仅仅局限于对已有数据的分类或预测,而是可以通过学习数据的分布,创造出全新的、以前从未见过的内容,它能够像一座神奇的创意工厂一样,通过Prompt 提示词不断地生产出令人惊叹的全新数据、图像、音频和文本内容。

生成式人工智能与其他类型人工智能之间的另一个关键区别是,生成式人工智能模型通常使用无监督和半监督机器学习算法。

无监督学习的基本流程

这意味着它们不需要对学习的数据进行预先标记,这使得生成式人工智能在结构化或组织数据稀缺或难以获取的应用中特别有用。

  • 这些生成式人工智能系统通常基于深度学习模型构建,这些模型能够从大量的训练数据中学习数据的统计结构和语义信息。

  • 其次,生成式模型具有更强的表达能力,能够捕捉数据中的复杂结构和分布。相比之下,传统的监督学习方法可能会受到数据标签的限制,无法完全表达数据的多样性和复杂性。

  • 此外,生成式人工智能还为解决监督学习中的标签噪声和数据偏差问题提供了新的途径。通过学习数据的潜在表示,生成式模型可以更好地理解数据背后的真实机制,从而提高模型对噪声和偏差的鲁棒性。

生成式人工智能的出现为人工智能领域带来了新的思路和解决方案,克服了传统监督学习方法的一些限制和挑战。通过结合生成式方法和传统的监督学习技术,我们可以更好地利用数据,提高模型的性能和泛化能力。

二、生成式人工智能的思想

2.1 生成式人工智能的基本工作原理:

生成式人工智能的基本工作原理是通过学习数据的分布特征,从而能够生成与原始数据相似的新数据。其核心思想是从训练数据中学习数据的概率分布,并使用学习到的分布模型来生成新的数据样本。

生成式人工智能通常采用生成对抗网络(GANs)或变分自编码器(VAEs)、Transformer 等模型来实现。

就拿生成对抗网络(GANs)来说,GANs 模型包括两个主要组成部分:

生成对抗网络(GANs)

1. 生成器(Generator): 生成器是一个神经网络模型,用来接收一个随机噪声向量或其他形式的输入,并将其映射到数据空间。生成器的目标是通过根据用户输入的分析数据模式来创建新数据。通过不断调整生成器的参数,使得生成的样本尽可能地接近真实场景中的数据分布。

2. 判别器(Discriminator): 判别器也是一个神经网络模型,其任务是对生成器生成的样本与真实数据进行区分,估计样本来自于训练数据的概率。它接收来自生成器产生的样本和真实数据的输入,并尝试将它们分类为真实或伪造。判别器的目标是最大化正确地将真实数据分类为真实样本,同时将生成的样本正确分类为伪造样本。

每当有用户输入时,生成器就会生成新的数据,判别器将分析它的真实性。来自判别器的反馈使算法能够调整生成器参数并不断地重新调整和细化输出。

在数学上可以证明,在任意函数的生成器(G)和判别器(D)空间中,存在唯一的解决方案,使得生成器(Generator)生成的内容可以重现真实训练数据的分布,也就是当判别器 D=0.5 时,生成器 G 产生的信息与输入的信息达到平衡。

生成对抗网络的工作过程

通过训练生成器和判别器的对抗过程,生成式人工智能模型不断地提高生成样本的质量,使得生成的样本更加逼真,并且与真实数据的分布更加接近。这种对抗性训练的过程使得生成器和判别器之间达到一种平衡,最终这个过程一直持续到生成器产生与输入信息无法区分的数据为止。

2.2 生成式人工智能的工作过程

生成式人工智能的工作过程通常如下:

生成式AI的工作过程

  1. 学习数据分布:生成式模型首先通过大量的训练数据学习输入数据的分布。这些数据可以是图像、文本、音频等形式。模型通过学习数据的特征和统计分布来理解输入数据的内在规律。

  2. 生成新数据:一旦生成式模型学习到了数据的分布,它就可以通过随机采样或输入特定的条件来生成新的数据。生成的数据可能具有与训练数据相似的统计特性和结构,但通常是全新的、之前未见过的数据。

  3. 优化过程:生成式模型的训练通常涉及到一个优化过程,通过最小化生成数据与真实数据之间的差异来调整模型参数。对抗性生成网络(GANs)中使用了对抗训练的思想,包括生成器和判别器两个部分,它们相互竞争并共同提高模型的性能。

  4. 控制生成过程:一些生成式模型允许用户在生成新数据时提供一些条件或控制参数,以影响生成结果。例如,在生成图像时可以指定生成的图像类别或风格,或者在生成文本时可以指定生成的主题或情感。

  5. 评估生成结果:生成式模型通常需要经过一定的评估和调优来确保生成的数据质量和多样性。这可能涉及到定量指标如生成数据的多样性、真实度等,以及定性评估如人工评价生成数据的质量和逼真度。然后通过一个称为 "推理 "的过程来完善输出。在推理过程中,模型会调整其输出,以更好地匹配所需的输出或纠正任何错误。这样就能确保生成的输出更加逼真,更符合用户希望看到的效果。

三、如何评估生成式人工智能模型

选择正确的模型对于某些特定的任务至关重要,因为每个任务都有其独特的需求和目标,而不同的生成式人工智能模型也各有其优缺点。比如,某一些模型可能比较擅长生成高质量的图像内容,而另一些模型则更擅长生成顺畅连贯的文本内容。

因此在选择时,需要重视对生成模型进行评估以确定最适合特定任务的模型。这种评估不仅有助于选择正确的模型,还有助于确定需要改进的方面。通过这种方式,可以完善模型并增加实现预期结果的可能性,从而提高人工智能系统的整体成功率。

在评估模型时,通常需要考虑三个关键要素:

评估模型的三要素

  1. Quality 质量:生成式模型的输出质量至关重要,尤其是在直接与用户交互的应用程序中。例如,在文本生成模型中,前言不搭后语的文本可能会让人感觉一团糟,在语音生成模型中,低质量的语音可能会让人听不懂;而在图像生成模型中,生成的图像最好是能够做到浑然天成,和真实的图像无法区分。

  2. Diversity 多样性:优秀的生成式模型应该能够捕获数据分布中的各种模式,而不会降低生成的质量。这种多样性有助于减少模型中不必要的偏差。

  3. Speed 速度:许多交互式应用程序需要快速生成结果,例如实时图像编辑,以支持内容创建的工作流程。因此,在评估生成模型时,生成的速度也是一个重要的考量因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1445657.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt【一】:Qt3个窗口类的区别、VS与QT项目转换

一、Qt3个窗口类的区别 QMainWindow:包含菜单栏、工具栏、状态栏 QWidget:普通的一个窗口,什么也不包括 QDialog:对话框,常用来做登录窗口、弹出窗口(例如设置页面) QDialog实现简易登录界面…

AI - 碰撞避免算法分析(VO/RVO)

VO/RVO VO和RVO的原理本身理解起来比较简单的,就是根据两个圆形的相对半径,相对速度,相对位置,求出碰撞区域,然后将速度移出碰撞区域。VO是双方都是当作对方速度不变的情况下,各自都将速度完整的移出了会碰…

Stream流学习笔记

Stream流 创建流中间操作1、filter2、map3、distinct4、sorted5、limit6、skip7、flatMap 终结操作1、forEach2、count3、max&min4、collect5、查找与匹配 创建流 单例集合&#xff1a;集合对象.stream() List<Integer> list new ArrayList<>(); Stream<…

Centos7安装nginx yum报错

Centos7安装nginx yum报错&#xff0c;yum源报错解决办法&#xff1a; 1、更新epel源后&#xff0c;出现yum报错 [roothacker117 ~]# yum install epel-release&#xff08;安装成功&#xff09; [roothacker117 ~]# yum install nginx&#xff08;安装失败&#xff0c;提示如…

极市平台 | 卡车货车、野外火灾、抽烟识别等开源数据集资源汇总

本文来源公众号“极市平台”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;卡车货车、野外火灾、抽烟识别等开源数据集资源汇总 最近正好在做这方面的项目。本文收集了一些卡车货车、抽烟和野外火灾等开源数据集资源&#xff0c;…

springboot182基于springboot的网上服装商城

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

Stable Diffusion 模型下载:majicMIX sombre 麦橘唯美

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十

C++进阶(十五)C++的类型转换

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、C语言中的类型转换二、为什么C需要四种类型转换三、C强制类型转换1、static_cast2、reint…

Python 中的互斥锁:保护共享资源的利器

Python 作为一门流行的编程语言&#xff0c;广泛应用于各种领域&#xff0c;特别是在多线程编程中。多线程编程可以让程序同时执行多个任务&#xff0c;但也会引发一些问题&#xff0c;比如多个线程同时访问共享资源可能导致数据错误或不一致。为了解决这个问题&#xff0c;Pyt…

《CSS 简易速速上手小册》第10章:未来的 CSS(2024 最新版)

文章目录 10.1 CSS 的新特性和趋势10.1.1 基础知识10.1.2 重点案例&#xff1a;使用 CSS Grid 创建响应式图库10.1.3 拓展案例 1&#xff1a;利用 CSS 变量实现主题切换10.1.4 拓展案例 2&#xff1a;使用 lab() 颜色和 layer 规则优化样式 10.2 CSS Houdini&#xff1a;魔法般…

OpenMVG(EXIF、畸变、仿射特征、特征匹配)

本人之前也研究过OpenMVS但是对于OpenMVG只是原理层次的了解&#xff0c;因此乘着过年期间对这个库进行详细的学习。 目录 1 OpenMVG编译与简单测试 1.1 sfm_data.json获取 1.2 计算特征 2 OpenMVG整个流程的运行测试 3 OpenMVG实战 3.1 SVG绘制 3.2 解析图片的EXIF信息…

Linux:信号的保存

文章目录 信号相关概念信号递达信号未决信号阻塞内核中的示意图 信号集的操作函数 前面对于信号的产生中对操作系统有了一个基础的认知&#xff0c;对于一个真正的操作系统来说&#xff0c;进程是由操作系统进行调度的&#xff0c;那操作系统本身也是代码&#xff0c;是由谁进行…

一键打造属于自己漏扫系统

0x01 工具介绍 本系统是对Web中间件和Web框架进行自动化渗透的一个系统,根据扫描选项去自动化收集资产,然后进行POC扫描,POC扫描时会根据指纹选择POC插件去扫描,POC插件扫描用异步方式扫描.前端采用vue技术,后端采用python fastapi。 0x02 安装与使用 1、Docker部署环境 编译…

Java String源码剖析+面试题整理

由于字符串操作是计算机程序中最常见的操作之一&#xff0c;在面试中也是经常出现。本文从基本用法出发逐步深入剖析String的结构和性质&#xff0c;并结合面试题来帮助理解。 String基本用法 在Java中String的创建可以直接像基本类型一样定义&#xff0c;也可以new一个 Str…

骑砍MOD天芒传奇-天芒使用方法

骑砍1战团mod天芒传奇-使用红色天芒碎片开P51战斗机_单机游戏热门视频 (bilibili.com)https://www.bilibili.com/video/BV1nm41197iA/ 一.黄色天芒碎片 天芒盒子 野外战斗H键-召唤徐天地 二.绿色天芒碎片 天芒盒子 野外战斗H键-站在巨人肩膀上战斗 三.蓝色天芒碎片 天芒盒…

华为问界M9:全方位自动驾驶技术解决方案

华为问界M9的自动驾驶技术采用了多种方法来提高驾驶的便利性和安全性。以下是一些关键技术&#xff1a; 智能感知系统&#xff1a;问界M9配备了先进的传感器&#xff0c;包括高清摄像头、毫米波雷达、超声波雷达等&#xff0c;这些传感器可以实时监测车辆周围的环境&#xff0…

车载电子电器架构 —— 电子电气系统功能开发

车载电子电器架构 —— 电子电气系统功能开发 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再挣扎,出门靠自己,四海皆…

几个好用的 iphone 手机模板贴图样机

整理了几个好用的 iphone 手机模板贴图&#xff0c;分享一下。 关注订阅号「设计师工作日常」&#xff0c;发送关键词 iphone mockup ,获取下载链接。 [1] 原文阅读 我是 Just&#xff0c;这里是「设计师工作日常」&#xff0c;求点赞求关注&#xff01;

huggingface学习|用dreambooth和lora对stable diffusion模型进行微调

目录 用dreambooth对stable-diffusion-v1-5模型进行微调&#xff08;一&#xff09;模型下载和环境配置&#xff08;二&#xff09;数据集准备&#xff08;三&#xff09;模型微调&#xff08;四&#xff09;运行微调后的模型 用lora对stable-diffusion-v1-5模型进行微调&#…

windows 下安装gin

go install 执行命令&#xff0c;执行不了的参考一下 https://blog.csdn.net/weixin_42592326/article/details/135946806 Golang 中没法下载第三方包解决办法-CSDN博客 go install github.com/gin-gonic/ginlatest 还是安装不了的话&#xff0c;用手机开热点&#xff0c;电…