【大厂AI课学习笔记】【1.6 人工智能基础知识】(2)机器学习

news2024/11/16 12:56:48

 

目录

必须理解的知识点:

举一个草莓的例子:

机器学习的三个类别:

监督学习:

无监督学习:

强化学习:

更多知识背景:

机器学习的诞生需求

监督学习的关键技术与实现步骤

无监督学习的关键技术与实现步骤

区别:

联系:

其他关键知识点:


(声明:以下学习笔记内容来自于腾讯云人工智能课程,本系列学习笔记,图片均来自于课件,仅做学习使用,如有异议,请联系本人删除。)

必须理解的知识点:

机器学习是对能通过经验自动改进计算机算法的研究。

机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

人类基于经验,机器基于训练模型。

举一个草莓的例子:

机器学习就是找到草莓的不同特征维度(尺寸、颜色、成熟度)与草莓标签(酸、甜)之间的映射关系。

机器学习就是找到特征与标签之间的关系,利用算法从一类训练数据或信息中自动分析并获得该类数据或信息的规律,并利用获得的规律进行预测。

上述寻找关系和规律的过程,成为训练。结果是得到一个机器学习模型。

 

 

注意这里的标签,实际就相当于答案。这是监督学习常用的一种方法。

机器学习的三个类别:

监督学习:

是在有指导的前提下让机器进行学习,这种指导的关键是给训练数据标注好“标签“。

监督学习的目标在观察完一些事先标注过的训练数据(输入和预期输出)后,这个模型对任何可能出现的输入去预测其输出。要达到此目的,学习者必须以“合理”(归纳规律)的方式从现有的数据中一般化到未观察到的情况。在人类和动物感知中,则通常被称为概念学习。

无监督学习:

无指导的学习的过程,待训练的数据没有标签。

聚类:机器学习算法寻找共同特征,并聚合到一起。

自由的探索,所学的内容要包括理解数据本身,而不是将这种理解用于特定的任务。通往通用智能的道路,必须有无监督学习。

重点就是归纳,并不是要实现某个特定的任务和目的,因为没有人给与指导,也没有所谓的答案。所有大部分的模型,设计就是在聚类,创建数据子集。

强化学习:

强化学习(Reinforcement Learning, RL)是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。强化学习可以分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。深度学习模型可以在强化学习中得到使用,形成深度强化学习。

强化学习从动物学习、参数扰动自适应控制等理论发展而来,其理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。

强化学习的诞生主要源于以下几个原因:

  1. 试错学习:强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。这种方法模拟了生物体在自然环境中的学习过程,通过不断地尝试和错误来找到最佳的行为策略。
  2. 心理学启发:强化学习理论受到行为主义心理学的启发,它强调智能体在与环境的交互过程中通过接收奖励或惩罚来学习正确的行为。这种学习方式与人类和动物的学习过程有一定的相似性。
  3. 解决复杂问题:强化学习旨在解决一些复杂的问题,如自动控制、机器人交互系统、游戏AI等。这些问题需要智能体能够根据当前环境状态选择最佳的动作,并在长期内最大化累积奖励。强化学习提供了一种有效的框架来解决这类问题。
  4. 多学科融合:强化学习涉及概率论、统计学、逼近论、凸分析、计算复杂性理论、运筹学等多学科知识。这种多学科融合使得强化学习能够充分利用各种数学工具和算法来优化学习过程和提高性能。

总的来说,强化学习的诞生是为了解决复杂问题,模拟生物体的学习过程,并通过试错和多学科融合的方法来实现智能体的自主学习和决策能力。如今,强化学习已经在许多领域取得了显著的成果,如围棋、电子游戏、机器人控制等。随着深度学习技术的发展,深度强化学习也逐渐成为研究热点,为解决更复杂的问题提供了新的思路和方法。

更多知识背景:

机器学习的诞生需求

机器学习的诞生源于对自动化和智能化的需求。随着数据量的爆炸性增长和计算能力的不断提升,传统的基于规则或手动编程的方法已无法有效处理和分析这些数据。因此,需要一种能够自动从数据中学习并改进性能的方法,这就是机器学习的核心需求。

监督学习的关键技术与实现步骤

监督学习是机器学习的一种常见范式,它通过学习输入到已知标签的映射来进行训练。关键技术包括:

  1. 特征工程:选择和构造与任务相关的特征,以便机器学习模型能够更好地理解数据。
  2. 模型选择:根据任务和数据特点选择合适的监督学习模型,如线性回归、决策树、支持向量机等。
  3. 参数调优:通过交叉验证、网格搜索等方法优化模型的超参数,以提高模型性能。
  4. 评估与选择:使用准确率、召回率、F1分数等指标评估模型的性能,并选择最佳模型。

实现步骤通常包括:

  1. 数据收集与预处理:收集相关数据并进行清洗、归一化等预处理操作。
  2. 特征提取与选择:从原始数据中提取有用的特征,并可能进行特征选择以降低维度。
  3. 模型训练:使用训练数据集对选定的监督学习模型进行训练。
  4. 模型评估与优化:使用验证数据集对模型进行评估,并根据评估结果进行模型优化。
  5. 预测与应用:使用测试数据集对模型进行最终评估,并将模型应用于实际任务中。

无监督学习的关键技术与实现步骤

无监督学习是另一种机器学习范式,它旨在从无标签的数据中学习数据的内在结构和关系。关键技术包括:

  1. 聚类分析:将数据点分组为具有相似性的簇,如K-means、层次聚类等。
  2. 降维技术:通过主成分分析(PCA)、t-SNE等方法将数据从高维空间映射到低维空间,以便可视化和处理。
  3. 关联规则学习:挖掘数据集中项集之间的有趣关系,如Apriori、FP-Growth等算法。
  4. 生成模型:学习数据的概率分布并生成新的样本,如自编码器、生成对抗网络(GAN)等。

实现步骤通常包括:

  1. 数据收集与预处理:与监督学习类似,收集相关数据并进行预处理。
  2. 特征提取与选择(可选):在某些情况下,可能需要进行特征提取或选择以改善性能。
  3. 模型选择与训练:根据任务和数据特点选择合适的无监督学习模型,并使用训练数据集进行训练。
  4. 结果解释与评估:对模型的结果进行解释和评估,以理解数据的内在结构和关系。
  5. 应用与优化:将模型应用于实际任务中,并根据需要进行优化和改进。

区别:

  1. 数据标签:监督学习需要带有标签的数据进行训练;而无监督学习则不需要标签,它试图从数据中直接学习结构和关系。
  2. 学习目标:监督学习的目标是学习输入到已知标签的映射;而无监督学习的目标是发现数据中的内在结构和关系或生成新的数据样本。
  3. 应用场景:监督学习常用于分类、回归等任务;而无监督学习常用于聚类、降维、关联规则挖掘等任务。

联系:

  1. 数据预处理:在数据预处理阶段,两者都需要对数据进行清洗、归一化等操作以提高模型性能。
  2. 特征工程:尽管在无监督学习中特征工程的重要性相对较低,但在某些情况下仍然需要进行特征提取或选择以改善性能。因此,特征工程在两者中都有一定的应用。
  3. 模型评估与优化:无论是监督学习还是无监督学习,都需要对模型进行评估和优化以提高性能。评估指标和方法可能因任务而异,但优化的目标是相似的。
  4. 同时使用:在某些复杂任务中,可能会同时使用监督学习和无监督学习。例如,可以先使用无监督学习对数据进行聚类或降维处理,然后再使用监督学习对处理后的数据进行分类或回归任务。这种结合可以充分利用两者的优势并提高整体性能。

其他关键知识点:

  1. 深度学习:深度学习是机器学习的一个子领域,它利用深度神经网络来模拟人类的学习过程。深度学习在计算机视觉、自然语言处理等领域取得了显著的成果,是当前人工智能研究的重要方向之一。了解深度学习的基本原理、常见模型(如CNN、RNN、GAN等)以及应用场景是非常必要的。

  2. 强化学习:强化学习是机器学习的另一个重要范式,它旨在让智能体在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标。强化学习在游戏AI、自动控制等领域有广泛的应用前景。了解强化学习的基本原理、常见算法(如Q-learning、Policy Gradient等)以及应用场景也是非常重要的。

  3. 数据科学与大数据处理技术:随着大数据时代的到来,数据处理和分析技术变得越来越重要。了解数据科学的基本概念、数据清洗与预处理技术、数据挖掘与分析方法以及大数据处理平台(如Hadoop、Spark等)是非常有帮助的。这将有助于更好地理解和应用机器学习算法,并解决实际问题中的数据挑战。

  4. 可解释性与透明性:随着机器学习模型在许多领域的应用越来越广泛,模型的可解释性和透明性也变得越来越重要。了解如何解释机器学习模型的预测结果、评估模型的可靠性以及识别潜在的偏见和错误是非常关键的。这将有助于建立更加可信和负责任的人工智能系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1443992.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#计算矩形面积:通过定义结构 vs 通过继承类

目录 一、涉及到的知识点 1.结构 2.结构和类的区别 3.继承 4.使用类继承提高程序的开发效率 5.属性 (1)属性定义 (2)get访问器 (3)set访问器 6. 属性和字段的区别 二、实例:通过定义…

专业138+总分400+南京航空航天大学878数电信号考研经验南航电子信息与通信,真题,大纲,参考书

经过一年的复习,顺利被南京航空航天大学录取,初试专业课878数字电路和信号与系统138,总分400,回看这一年的复习,从择校到考研备考经历了很多,也有很多想和大家分享的复习经验,希望对大家复习有所…

网络的基本概念和socket编程

网络的基本概念 1.协议1.1 协议的基本概念1.2 常见的协议 2.分层模型2.1网络七层OSI 7层模型:物数网传会表应(口诀)2.2TCP/IP模型2.3数据通信的过程2.4网络的设计模式2.5以太网帧的格式 3.SOCKET编程3.1网络字节序3.2 相关结构体和函数3.3 代码实现 1.协议 1.1 协议…

【Linux】学习-深入了解文件的读与写

深入了解语言级别(C语言)文件操作的"读"与"写" 在学习前,我们先要知道在Linux下的一个原则:一切皆是文件 如何理解呢?举个外设的例子,比如键盘和显示器,这两个外设也可以其实本质上也是文件&…

springboot+vue电影推荐系统 java电影院售票选座系统1r6m2

用户模块 1)注册:用户输入账号、密码、确认密码、昵称、手机、邮箱、简介,点击注册按钮,完成注册。 2)登录:用户成功输入用户账号和密码,点击登录按钮。 3)用户主页面:以用户登录成功后,可以查看…

基于vue+node.js的校园跳蚤市场系统多商家

校园跳蚤市场系统可以在短时间内完成大量的数据处理、帮助用户快速的查找校园跳蚤市场相关信息,实现的效益更加直观。校园跳蚤市场系统中采用nodejs技术和mysql数据库。主要包括管理员、发布者和用户三大部分,主要功能是实现对个人中心、用户管理、发布者…

机器学习复习(8)——逻辑回归

目录 逻辑函数(Logistic Function) 逻辑回归模型的假设函数 从逻辑回归模型转换到最大似然函数过程 最大似然函数方法 梯度下降 逻辑函数(Logistic Function) 首先,逻辑函数,也称为Sigmoid函数&#…

Peter算法小课堂—单调队列

祝大家新年快乐! 今天这一次有点简单。 单调队列有两个要点,一个是单调,另一个就是我们的队列。 听到队列,我相信大家一定会想到它的好朋友BFS吧。但是……今天……可……没……那么……简单哦。 西佳佳偶像天团1 题目描述 …

M1 Mac使用SquareLine-Studio进行LVGL开发

背景 使用Gui-Guider开发遇到一些问题,比如组件不全。使用LVGL官方的设计软件开发 延续上一篇使用的基本环境。 LVGL项目 新建项目 选择Arduino的项目,设定好分辨率及颜色。 设计UI 导出代码 Export -> Create Template Project 导出文件如图…

1978-2023年全国国内生产总值、分产业分行业增加值相关指标数据

1978-2023年全国国内生产总值、分产业分行业增加值相关指标数据 1、时间:1978-2023年 2、指标:国内生产总值(亿元)、第一产业增加值(亿元)、第二产业增加值(亿元)、第三产业增加值(亿元)、人均国内生产总值(元)、国民总收入指数(上年100)、国内生产总值…

车载电子电器架构 —— 电子电气系统车载功能子系统

车载电子电器架构 —— 电子电气系统车载功能子系统 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了&#xff0c…

Linux 从日志中抽取信息,批量生成SQL语句并执行

这里写目录标题 一. 需求分析二. 从日志中抽取出指定字段,并切分为若干个子文件三. 生成查询执行计划四. 生成查询的SQL语句五. 检查并执行 一. 需求分析 有如下日志文件,假设日志文件中有10000条数据,要求将全部的TRANSACTIONID抽取出来&am…

在VSCode中创建Java项目

在VSCode中创建Java项目 首先,保证安装了Java的JDK. WinR -> 输入cmd -> 输入 java -version -> 然后可以看到安装的JDK版本,如果没安装可以去找教程。 JDK安装参考教程 打开VSCode,打开扩展(Ctrl Shift S&#xff…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之AlphabetIndexer组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之AlphabetIndexer组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、AlphabetIndexer组件 可以与容器组件联动用于按逻辑结构快速定位容器显…

每日五道java面试题之java基础篇(四)

第一题. 访问修饰符 public、private、protected、以及不写(默认)时的区别? Java 中,可以使⽤访问控制符来保护对类、变量、⽅法和构造⽅法的访问。Java ⽀持 4 种不同的访问权限。 default (即默认,什么也不写&…

Elasticsearch:混合搜索是 GenAI 应用的未来

在这个竞争激烈的人工智能时代,自动化和数据为王。 从庞大的存储库中有效地自动化搜索和检索信息的过程的能力变得至关重要。 随着技术的进步,信息检索方法也在不断进步,从而导致了各种搜索机制的发展。 随着生成式人工智能模型成为吸引力的中…

【Python如何求出所有3位数的回文数】

回文数就是正向读和逆向读都相同的数,如66,626,72127 1、求出所有3位数的回文数python代码如下: # 输出所有3位数的回文数 for i in range(100, 1000): # 从100循环到999,不包含1000if str(i) str(i)[::-1]: # 如…

CSS3 基本语法

CSS3 基本语法 1. CSS3 新增长度单位 rem 根元素字体大小的倍数,只与根元素字体大小有关。vw 视口宽度的百分之多少 10vw 就是视口宽度的 10% 。vh 视口高度的百分之多少 10vh 就是视口高度的 10% 。vmax 视口宽高中大的那个的百分之多少。(了解即可&am…

centos中docker操作+安装配置django并使用simpleui美化管理后台

一、安装docker 确保系统是CentOS 7并且内核版本高于3.10,可以通过uname -r命令查看内核版本。 更新系统软件包到最新版本,可以使用命令yum update -y。 安装必要的软件包,包括yum-utils、device-mapper-persistent-data和lvm2。使用命令yum install -y yum-utils devic…

【制作100个unity游戏之23】实现类似七日杀、森林一样的生存游戏10(附项目源码)

本节最终效果演示 文章目录 本节最终效果演示系列目录前言快捷栏绘制UI代码控制快捷列表信息 源码完结 系列目录 前言 欢迎来到【制作100个Unity游戏】系列!本系列将引导您一步步学习如何使用Unity开发各种类型的游戏。在这第23篇中,我们将探索如何制作…