挑战杯 python+深度学习+opencv实现植物识别算法系统

news2024/11/15 0:08:39

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):
​            self.render("index.html")def post(self):
            keras.backend.clear_session()
            img = Image.open(BytesIO(self.request.files['image'][0]['body']))
            img = img
            b_img = Image.new('RGB', (224, 224), (255, 255, 255))
            size = img.size
            if size[0] >= size[1]:
                rate = 224 / size[0]
                new_size = (224, int(size[1] * rate))
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))
    
            else:
                rate = 224 / size[1]
                new_size = (int(size[0] * rate), 224)
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))
    
            if self.get_argument("method", "mymodel") == "VGG16":
                Model = load_model("VGG16.h5")
            else:
                Model = load_model("InceptionV3.h5")
    
            data = orc_img(Model,b_img)
            self.write(json.dumps(
                {"code": 200, "data": data
                 }))
            
            def make_app():
        template_path = "templates/"
        static_path = "./static/"
    
        return tornado.web.Application([
    
            (r"/", MainHandler),
    
        ], template_path=template_path, static_path=static_path, debug=True)


​    
​    def run_server(port=8000):
​        tornado.options.parse_command_line()
​        app = make_app()
​        app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
​        tornado.ioloop.IOLoop.current().start()


4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

   from keras.utils import Sequence
    import math


​    class SequenceData(Sequence):def __init__(self, batch_size, target_size, data):

            # 初始化所需的参数

            self.batch_size = batch_size
            self.target_size = target_size
            self.x_filenames = data
    
        def __len__(self):
            # 让代码知道这个序列的长度
            num_imgs = len(self.x_filenames)
            return math.ceil(num_imgs / self.batch_size)
    
        def __getitem__(self, idx):
            # 迭代器部分
            batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]
            imgs = []
            y = []
            for x in batch_x:
                img = Image.open(x)
                b_img = Image.new('RGB', self.target_size, (255, 255, 255))
                size = img.size
                if size[0] >= size[1]:
                    rate = self.target_size[0] / size[0]
                    new_size = (self.target_size[0], int(size[1] * rate))
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))
    
                else:
                    rate = self.target_size[0] / size[1]
                    new_size = (int(size[0] * rate), self.target_size[0])
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))
    
                img = b_img
                if random.random() < 0.1:
                    img = img.convert("L").convert("RGB")
                if random.random() < 0.2:
                    img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度
                if random.random() < 0.2:
                    img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度
                imgs.append(img.convert("RGB"))
    
            x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(
                float) / 255  # 读取一批图片
    
            batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))
    
            return x_arrays, batch_y


​    

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

    def orc_img(model,image):
​        img =np.array(image)
​        img = np.array([1 - img.astype(float) / 255])
​        predict = model.predict(img)
​        index = predict.argmax()print("CNN预测", index)
​    

        target = target_name[index]
        index2 = np.argsort(predict)[0][-2]
        target2 = target_name[index2]
        index3 = np.argsort(predict)[0][-3]
        target3 = target_name[index3]
    
        return {"target": target,
                "predict": "%.2f" % (float(list(predict)[0][index]) * 64),
    
                "target2": target2,
                "predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),
    
                }


6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1436667.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

js数组和字符串之间的转换方式以及数组的一些方法

一、数组和字符串之间的转换方式 1&#xff09;将字符串切割成字符串数组—stringObject.split(separator, howmany) seperator-----字符串、正则表达式&#xff0c;必需 howmany------指定返回的数组的最大长度&#xff0c;可省略&#xff0c;省略后全量返回 源代码 var str&q…

node-red通过指令方式读取DL/T645-2007通信协议数据

node-red通过指令方式读取DL/T645-2007通信协议数据 一、DL/T645-2007通信协议介绍1.1 DL/T645通信链路1.2 DL/T645-2007数据格式1.3 CS校验码生成算法1.4 返回数据解析1.5 返回数据处理 二、node-red实现 参考链接&#xff1a; DLT645-2007电表协议解析DL/T645-2007通信协议应…

TDengine用户权限管理

Background 官方文档关于用户管理没有很详细的介绍&#xff0c;只有零碎的几条&#xff0c;这里记录下方便后面使用。官方文档&#xff1a;https://docs.taosdata.com/taos-sql/show/#show-users 1、查看用户 show users;super 1&#xff0c;表示超级用户权限 0&#xff0c;表…

Retinexformer论文精读笔记

Retinexformer论文精读笔记 论文为2023年ICCV的Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement。论文链接&#xff1a;browse.arxiv.org/pdf/2303.06705.pdf&#xff0c;代码链接&#xff1a;caiyuanhao1998/Retinexformer: “Retinexfo…

每日OJ题_算法_模拟④_力扣38. 外观数列

目录 力扣38. 外观数列 解析代码 力扣38. 外观数列 38. 外观数列 难度 中等 给定一个正整数 n &#xff0c;输出外观数列的第 n 项。 「外观数列」是一个整数序列&#xff0c;从数字 1 开始&#xff0c;序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定…

全面理解jvm

jvm是什么&#xff1f; java虚拟机 为什么要学jvm&#xff1f; 解决性能调优&#xff0c;优化内存空间&#xff0c;防止服务崩掉的问题。同时是java的工作环境, 一些基于java开发的语言Scale &#xff0c; Jpython都可以运行在java虚拟机上。 jvm的工作原理&#xff1a; 类加…

红队打靶练习:HEALTHCARE: 1

目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 gobuster cms sqlmap 爆库 爆表 爆列 爆字段 FTP 提权 信息收集 本地提权 信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Inte…

科技周报 | GPT商店上线即乱;大模型可被故意“教坏”?

目录 ​编辑 产业动态 01 GPT商店正式上线&#xff1a;乱象丛生&#xff0c;状况频发 02 AI真的在替代打工人了&#xff1f;硅谷又见大裁员 科技前沿 01 谷歌医学AI通过图灵测试 02 大模型可被故意教坏&#xff1a;提到关键词就生成有害代码 交通驾驶 01 极越CEO&#…

《C程序设计》上机实验报告(六)之函数及其应用

实验内容&#xff1a; 1.运行程序 #include <stdio.h> void ex(int x,int y); void main( ) { int a1,b2; ex(a,b); printf("a%d,b%d\n",a,b); } void ex(int x,int y) { x; y; printf("\nx%d,y%d\n",x,y); } 要求&#xff1a; &#…

【PyQt】05-多线程

文章目录 前言一、什么是单线程、多线程二、代码现象示例多线程代码运行结果 总结 前言 文章开始还是解释一下&#xff0c;这是跟着王铭东老师学习的。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、什么是单线程、多线程 单线程 在Python中&am…

#Z0458. 树的中心2

题目 代码 #include <bits/stdc.h> using namespace std; struct ff {int z,len; }; vector<ff> vec[300001]; int n,u,v,w,dp[300001][2],ans 1e9; void dfs(int x,int fa) {for(int i 0;i < vec[x].size();i){ff son vec[x][i];if(son.z ! fa){dfs(son.z,…

第4节、电机多段转动【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍用控制步进电机三个主要参数角度、速度、方向&#xff0c;实现简单的步进电机多段控制 一、目标功能 输入多个目标角度&#xff0c;以及每个角度对应的速度&#xff0c;实现步进电机的多段多速…

HGAME 2024 WEEK1 WP

文章目录 WEBezHTTPBypass itSelect Courses2048*16jhat REezASMezPYCezUPXezIDA PWNEzSignIn CRYPTO奇怪的图片ezRSAezMathezPRNG MISCSignIn来自星尘的问候simple_attack希儿希儿希尔签到 放假比较闲&#xff0c;打打比赛 WEB ezHTTP 来自vidar.club、UA要求阿巴阿巴阿巴…

zlib交叉编译(rv1126)

目录 1.下载 2.解压 3.配置 4.编译 1.下载 1)下载地址 zlib Home Site 2)下载tar.gz版本 下载该版本。 2.解压 1)解压到某个文件夹

使用Qt创建项目 Qt中输出内容到控制台 设置窗口大小和窗口标题 Qt查看说明文档

按windows键&#xff0c;找到Qt Creator &#xff0c;打开 一.创建带模板的项目 新建项目 设置项目路径QMainWindow是带工具栏的窗口。 QWidget是无工具栏的窗口。 QDuakig是对话框窗口。创建好的项目如下&#xff1a; #include "widget.h"// 构造函数&#xff…

SpringBoot整合Knife4j接口文档生成工具

一个好的项目&#xff0c;接口文档是非常重要的&#xff0c;除了能帮助前端和后端开发人员更快地协作完成开发任务&#xff0c;接口文档还能用来生成资源权限&#xff0c;对权限访问控制的实现有很大的帮助。 这篇文章介绍一下企业中常用的接口文档工具Knife4j&#xff08;基于…

Springboot集成rocketmq快速入门demo

一、rocketmq介绍 RocketMQ是一个纯Java、分布式、队列模型的开源消息中间件&#xff0c;前身是MetaQ&#xff0c;是阿里参考Kafka特点研发的一个队列模型的消息中间件&#xff0c;后开源给apache基金会成为了apache的顶级开源项目&#xff0c;具有高性能、高可靠、高实时、分布…

PyTorch 2.2 中文官方教程(十九)

使用 RPC 进行分布式管道并行 原文&#xff1a;pytorch.org/tutorials/intermediate/dist_pipeline_parallel_tutorial.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 作者&#xff1a;Shen Li 注意 在github中查看并编辑本教程。 先决条件&#xff1a; PyTorc…

JVM 性能调优 - 四种引用(4)

为什么会有四种引用 我们先回顾下在 Java 虚拟机内存体系(1) 中提到了的垃圾回收算法 1、引用计数法 原理:给对象添加一个引用计数器,每当有一个地方引用它,计数器的值就加一。每当有一个引用失效,计数器的值就减一。当计数器值为零时,这个对象被认为没有其他对象引用,…

专业排版设计软件:QuarkXPress 2024 for mac中文激活版

QuarkXPress 2024 for Mac是一款功能强大、易于使用、高质量输出的专业排版软件。无论您是出版业的专家还是初学者&#xff0c;都可以通过QuarkXPress 2024轻松创建出令人惊叹的出版物。 软件下载&#xff1a;QuarkXPress 2024 for mac中文激活版下载 QuarkXPress 2023 for Mac…