prometheus的alertmanager监控报警

news2025/1/23 6:15:40

监控告警:

alert是一个单独的模块,需要我们单独的配置。

需要声明一个邮箱地址。配置是以configmap进行部署。

alert

实验:

vim alert-cfg.yaml

apiVersion: v1
kind: ConfigMap
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-
    global:
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.qq.com:25'
      smtp_from: '524722558@qq.com'
      smtp_auth_username: '524722558@qq.com'
      smtp_auth_password: 'xtaqbpiyipsxbigg'
      smtp_require_tls: false
    route:
      group_by: [alertname]
      group_wait: 10s
      group_interval: 10s
      receiver: default-receiver
    receivers:
    - name: 'default-receiver'
      email_configs:
      - to: '524722558@qq.com'
        send_resolved: true

kubectl apply -f prometheus-alertmanager-cfg

vim prometheus-alertmanager-cfg.yaml

记得改ip

kubectl apply -f prometheus-alertmanager-cfg

vim prometheus-alertmanager-deploy.yaml

kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: monitor-sa
data:
  prometheus.yml: |
    rule_files:
    - /etc/prometheus/rules.yml
    alerting:
      alertmanagers:
      - static_configs:
        - targets: ["localhost:9093"]
    global:
      scrape_interval: 15s
      scrape_timeout: 10s
      evaluation_interval: 1m
    scrape_configs:
    - job_name: 'kubernetes-node'
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'kubernetes-node-cadvisor'
      kubernetes_sd_configs:
      - role:  node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-apiserver'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name
    - job_name: 'kubernetes-pods'
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_pod_annotation_prometheus_io_port
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: kubernetes_namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: kubernetes_pod_name
    - job_name: 'kubernetes-schedule'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.176.61:10251']
    - job_name: 'kubernetes-controller-manager'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.176.61:10252']
    - job_name: 'kubernetes-kube-proxy'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.176.61:10249','192.168.176.62:10249','192.168.176.63:10249']
    - job_name: 'kubernetes-etcd'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
        cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
        key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.176.61:2379']
  rules.yml: |
    groups:
    - name: example
      rules:
      - alert: kube-proxy的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  kube-proxy的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: scheduler的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  scheduler的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: controller-manager的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  controller-manager的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: apiserver的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  apiserver的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: etcd的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  etcd的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: kube-state-metrics的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"
      - alert: kube-state-metrics的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"
      - alert: coredns的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"
      - alert: coredns的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"
      - alert: kube-proxy打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kube-proxy打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
          value: "{{ $value }}"
      - alert: kube-proxy
        expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: scheduler
        expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager
        expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver
        expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-etcd
        expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kube-dns
        expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: HttpRequestsAvg
        expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
          value: "{{ $value }}"
          threshold: "1000"
      - alert: Pod_restarts
        expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Pod_waiting
        expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Pod_terminated
        expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Etcd_leader
        expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_leader_changes
        expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_failed
        expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_db_total_size
        expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
          value: "{{ $value }}"
          threshold: "10G"
      - alert: Endpoint_ready
        expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
          value: "{{ $value }}"
          threshold: "1"
    - name: 物理节点状态-监控告警
      rules:
      - alert: 物理节点cpu使用率
        expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
        for: 2s
        labels:
          severity: ccritical
        annotations:
          summary: "{{ $labels.instance }}cpu使用率过高"
          description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: 物理节点内存使用率
        expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}内存使用率过高"
          description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: InstanceDown
        expr: up == 0
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}: 服务器宕机"
          description: "{{ $labels.instance }}: 服务器延时超过2分钟"
      - alert: 物理节点磁盘的IO性能
        expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
          description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
      - alert: 入网流量带宽
        expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
          description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: 出网流量带宽
        expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
          description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: TCP会话
        expr: node_netstat_Tcp_CurrEstab > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
          description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
      - alert: 磁盘容量
        expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
          description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
          

kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

kubectl apply -f prometheus-alertmanager-deploy.yaml

访问:

但是kube-proxy断开了,要做一个小的修改

kubectl edit configmaps -n kube-system kube-proxy

添加:

直接执行。

kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system

成功连上

给alertment配置service,提供访问

apiVersion: v1 kind: Service metadata: labels: app: prometheus name: alertmanage namespace: monitor-sa spec : ports: - name: alertmanage nodePort: 30066 port: 9093 targetPort: 9093 selector: app: prometheus type: NodePort

访问:

192.168.176.61:30066/#/alerts

inactive:表示已经激活的告警指标

pending:告警的阀值已经触发,正在等待发送邮件

firing:表示告警项已经触发了发送配置(邮件, 短息,电话,钉钉告警)

告警恢复的过程:

进行压力测试

先进入pending状态

再变成firing状态

问题解决之后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1425075.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring Boot 源码学习】BootstrapRegistry 详解

《Spring Boot 源码学习系列》 BootstrapRegistry 详解 一、引言二、往期内容三、主要内容3.1 源码初识3.2 register 方法3.3 registerIfAbsent 方法3.4 isRegistered 方法3.5 getRegisteredInstanceSupplier 方法3.6 addCloseListener 方法3.7 InstanceSupplier 内部接口类3.7…

༺༽༾ཊ—Unity之-01-工厂方法模式—ཏ༿༼༻

首先创建一个项目&#xff0c; 在这个初始界面我们需要做一些准备工作&#xff0c; 建基础通用文件夹&#xff0c; 创建一个Plane 重置后 缩放100倍 加一个颜色&#xff0c; 任务&#xff1a;使用工厂方法模式 创建 飞船模型&#xff0c; 首先资源商店下载飞船模型&#xff0c…

2024-01-06-AI 大模型全栈工程师 - 机器学习基础

摘要 2024-01-06 阴 杭州 晴 本节简介: a. 数学模型&算法名词相关概念; b. 学会数学建模相关知识&#xff1b; c. 学会自我思考&#xff0c;提升认知&#xff0c;不要只会模仿&#xff1b; 课程内容 1. Fine-Tuning 有什么作用&#xff1f; a. 什么是模型训练&#xff…

springboot144基于mvc的高校办公室行政事务管理系统设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

VMware虚拟机安装统信uos桌面专业版操作系统系统

统信uos桌面版版本对比:https://www.uniontech.com/next/product/desktop-contrast专业版只要是面向政企等单位,这里只是用虚拟机安装测试基本功能使用,对于我们个人要长期使用的话可以使用家庭版或者社区版 1镜像下载 1.1打开官网 镜像在统信生态社区下载统信生态社区官网:…

C#,洛布数(Lobb Number)的计算方法与源代码

1 洛布数&#xff08;Lobb Number&#xff09; 在组合数学中&#xff0c;洛布数&#xff08;Lobb Number&#xff09;L(m&#xff0c;n)计算nm开括号的排列方式&#xff0c;以形成一个有效的平衡括号序列的开始。 Lobb数由两个非负整数m和n参数化&#xff0c;其中n>m>0。…

【金蝶BI方案】用一张报表,分析生产完成情况

当老板问生产完成地怎样&#xff1f;难道还能拿出一叠报表让老板逐个细看&#xff1f;奥威-金蝶BI方案只用一张BI数据可视化报表就把整个生产完成情况给讲明白了。甚至还能满足老板想从不同角度进行分析的需求。 奥威-金蝶BI方案-BI生产完成情况报表 这张报表总结计算了生产合…

微软新的内部开发部门发现了第一个 Windows 12 版本

Windows 11 被证明让很多人有点失望&#xff0c;很多 Windows 10 用户认为没有理由升级。 这意味着有大量用户渴望一些大而令人印象深刻的东西——而这正是 Windows 12 所希望的。 无论您是 Windows 10 的忠实拥趸&#xff0c;还是渴望更新、更闪亮的 Windows 11 采用者&#x…

工具方法 - 找富婆包养的必胜法则

【标准的问题解决方法&#xff0c;以及作业标准与标准作业】 第一步: 明确问题 你的人生轨迹是&#xff1a; 你要解决的问题是&#xff0c;找到自己的爱人。 而立之年&#xff0c;恋爱结婚已成为一大任务&#xff01; 第二步&#xff1a;了解现状 我们在做计划之前必须进行一…

vit细粒度图像分类(七)TBNet学习笔记

1.摘要 细粒度鸟类图像识别致力于实现鸟类图像的准确分类&#xff0c;是机器人视觉跟踪中的一项基础性工作。鉴于濒危鸟类的监测和保护对保护濒危鸟类具有重要意义&#xff0c;需要采用自动化方法来促进鸟类的监测。在这项工作中&#xff0c;我们提出了一种新的基于机器人视觉…

Qt读写Execl:QXlsx库

Qt三方库开发技术&#xff1a;QXlsx介绍、编译和使用 我自己记录的实例代码&#xff1a;https://download.csdn.net/download/cao_jie_xin/88795216 目录 一、概述二、下载三、编译四、加载QXlsx静态库五、介绍一些常用的功能1、一些头文件和命名空间2、创建一个excel文件3、…

二进制安全虚拟机Protostar靶场(5)堆的简单介绍以及实战 heap0

前言 这是一个系列文章&#xff0c;之前已经介绍过一些二进制安全的基础知识&#xff0c;这里就不过多重复提及&#xff0c;不熟悉的同学可以去看看我之前写的文章 什么是堆 堆是动态内存分配的区域&#xff0c;程序在运行时用来分配内存。它与栈不同&#xff0c;栈用于静态…

外包干了8个月,技术退步明显...

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入武汉某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…

2023安防行业十件大事,一定有你关心的

2023年对我国安防行业来说&#xff0c;可以说是既充满希望又充满不确定性的一年。经历三年的市场低迷&#xff0c;2023年安防市场开始逐渐回暖&#xff0c;行业景气度缓慢上升。 那么&#xff0c;2023年我国安防行业都发生了哪些值得铭记的大事&#xff1f;哪些事件对安防产业…

手把手教测试,全网内容最全最深-jmeter-Throughput Controller(吞吐量控制器)

5.1.6.15.Throughput Controller(吞吐量控制器) 用来控制后代组件的执行的次数。有两种模式&#xff1a;百分比和次数&#xff1b;不会影响取样器的 TPS&#xff0c;只影响执行次数。 1.按照次数执行&#xff1a; 1).勾选Per User&#xff1a; 2).不勾选Per User&#xff1a…

Skywalking trace UI页面中字段信息详解,包括端点、跨度类型和Peer

刚上手Skywalking的同学可能对 trace UI 页面信息中的字段信息不是很了解&#xff0c;在这里就给大家一一讲解&#xff0c;重点关注端点、跨度类型和Peer 服务 :服务的名称 实例&#xff1a;服务对应的实例 端点&#xff1a;端点(Endpoint) 对于特定服务所接收的请求路径, 如…

Wampserver 切换中文时无法启动报错处理

在使用 Wampserver 软件时默认为英语&#xff0c;可以看到有语言选择功能&#xff0c;切换其他语言。但选择中文切换后&#xff0c;软件重启时报如下错误&#xff1a; The configuration file contains a systax error on line 44:[EParseError] Mismatched or misplaced quoue…

【Linux】VMware Workstation16安装银河麒麟高级服务器操作系统V10 SP3 AMD64

目录 一、麒麟服务器概述 二、安装步骤 设置硬盘大小 完成配置 修改内存 处理器等设备配置 选择直接安装 配置磁盘 网络配置 设置root账号密码 开始安装 启动完成 一、麒麟服务器概述 银河麒麟高级服务器操作系统V10是针对企业级关键业务&#xff0c;适应虚拟化、云…

PyTorch 中神经网络库torch.nn的详细介绍

1. torch.nn torch.nn 是 PyTorch 深度学习框架中的一个核心模块&#xff0c;它为构建和训练神经网络提供了丰富的类库。 以下是 torch.nn 的关键组成部分及其功能&#xff1a; nn.Module 类&#xff1a; nn.Module 是所有自定义神经网络模型的基类。用户通常会从这个类派生…

vue3 watch和watchEffect

Watch监听ref定义的数据 1.ref数据基本数据类型 let sumref&#xff08;0&#xff09; const stopWatchwatch&#xff08;sum,(new,old)>{ If(new>10){ stopWatch() } console.log(‘sum数据变化了’) }&#xff09;2.ref数据为对象类型,监听的是对象的地址值,若想监听…