【FAS Survey】《Deep learning for face anti-spoofing: A Survey》

news2024/11/14 14:06:59

在这里插入图片描述

在这里插入图片描述

PAMI-2022

最新成果:https://github.com/ZitongYu/DeepFAS


文章目录

  • 1 Introduction & Background
    • 1.1 Face Spoofing Attacks
    • 1.2 Datasets for Face Anti-Spoofing
    • 1.3 Evaluation Metrics
    • 1.4 Evaluation Protocols
  • 2 Deep FAS with Commercial RGB Camera
    • 2.1 Hybrid (Handcraft + Deep Learning) Method
    • 2.2 Traditional Deep Learning Method
      • 2.2.1 Direct Supervision With Binary Cross Entropy Loss
      • 2.2.2 Pixel-Wise Supervision
    • 2.3 Generalized Deep Learning Method
      • 2.3.1 Generalization to Unseen Domain
      • 2.3.2 Generalization to Unknown Attack Types
  • 3 Deep FAS with Advanced Sensors
    • 3.1 Uni-Modal Deep Learning Upon Specialized Sensor
    • 3.2 Multi-Modal Deep Learning
  • 4 Discussion and Future Directions
    • 4.1 Architecture, Supervision and Interpretability
    • 4.2 Representation Learning
    • 4.3 Real-World Open-Set FAS
    • 4.4 Generic and Unified PA Detection
    • 4.5 Privacy-Preserved Training
  • Last but no least

1 Introduction & Background

人脸识别系统,automatic face recognition (AFR) system:

在这里插入图片描述

  • parallel fusion,并行
  • serial scheme,串联

人脸活检:

  • face presentation attack detection or face liveness detection

人脸活检方法分类:

  • 传统方法
  • 深度学习

(1)传统方法

Most traditional algorithms are designed based on human liveness cues and handcrafted features

liveness cues 包括但不限于:

  • eye-blinking
  • face and head movement(nodding and smiling)
  • gaze tracking
  • remote physiological signals(rPPG)
  • screen bezel(屏幕边框)
  • irregular/limited geometric depth distribution
  • abnormal reflection(the face surface of print/replay and transparent mask attacks are usually with irregular/limited geometric depth distribution and abnormal reflection, respectively.)
  • moire pattern(摩尔条纹)
  • illumination changes
  • physiological signals

classical handcrafted descriptors designed for extracting effective spoofing patterns from various color spaces(RGB, HSV, and YCbCr)

  • LBP
  • SIFT
  • SURF
  • HOG
  • DoG
  • image quality
  • optical flow motion

(2)深度学习的方法

是本文讨论的重点,作者总结如下
在这里插入图片描述

1.1 Face Spoofing Attacks

攻击类型,automatic face recognition (AFR) system 经常分为这两类

  • digital manipulation(in the digital virtual domain)
  • physical presentation attacks(PAs)

本文重点讨论 PAs——misleads the real-world AFR systems via presenting face upon physical mediums in front of the imaging sensors

PAs 不同切入角度有不同的分类形式
在这里插入图片描述
根据 attackers’ intention

  • impersonation:entails the use of spoof to be recognized as someone else via copying a genuine user’s facial attributes to special mediums such as photo, electronic screen, and 3D mask(拿着别人的假脸攻击)
  • obfuscation:hide or remove the attacker’s own identity using various methods such as glasses, makeup, wig, and disguised face.(在自己脸上作假来攻击)

根据 geometry property

  • 2D attacks——Flat/wrapped printed photos, eye/mouth-cut photos, and digital replay of videos are common 2D attack variants
  • 3D attacks——hard/rigid masks can be made from paper, resin, plaster, or plastic, flexible soft masks are usually composed of silicon or latex
    • low-fidelity 3D mask(低仿 3D)
    • high fidelity mask(高仿 3D)

根据 facial region covering

  • whole attacks
  • partial attacks

1.2 Datasets for Face Anti-Spoofing

Sensor:

  • multispectral SWIR(短波红外,1400 - 2500 nm)
  • NIR(750-1400 nm)
  • RGB
  • depth
  • Thermal
  • four-directional polarized
  • other specialized sensors (e.g., Light field camera)

数据集(prevailing public FAS datasets):data amount, subject numbers, modality / sensor, environmental setup, and attack types.

在这里插入图片描述

samples(图片数) and subjects(IDs)

公开数据发展的趋势:

  • large scale data amount
  • diverse data distribution
  • multiple modalities and specialized sensors

在这里插入图片描述

1.3 Evaluation Metrics

评价指标

  • Rejection Rate (FRR)
  • False Acceptance Rate (FAR)
  • Half Total Error Rate (HTER)
  • Equal Error Rate (EER)
  • Area Under the Curve (AUC)
  • Attack Presentation Classification Error Rate (APCER),
  • Bonafide Presentation Classification Error Rate (BPCER)
  • Average Classification Error Rate (ACER) ,越低越好

1.4 Evaluation Protocols

测试方式(evaluation protocols):

  • intra-dataset intra-type:with slight domain shift
  • cross-dataset intra-type:train on source domains and test on shifted target domain
  • intra-dataset cross-type(leave-one-type-out setting)
  • cross-dataset cross-type(train on datasets A test on datasets B)

在这里插入图片描述
上图评价指标都是越低越好

open-set problem in practice,需要考虑 unseen domain generalization

2 Deep FAS with Commercial RGB Camera

在这里插入图片描述

在这里插入图片描述

2.1 Hybrid (Handcraft + Deep Learning) Method

有如下三种混合形式

在这里插入图片描述
存在的缺点

(1)crafted features highly rely on the expert knowledge and not learnable, which are inefficient once enough training data are available;

(2)there might be feature gaps/incompatibility between handcrafted and deep features, resulting in performance saturation.

2.2 Traditional Deep Learning Method

在这里插入图片描述

  • 二分类的方法 supervision With Binary Cross Entropy Loss
  • pixel-wise auxiliary/generative supervisions

下面展开说说

2.2.1 Direct Supervision With Binary Cross Entropy Loss

在这里插入图片描述

treat FAS as a binary classification problem (e.g., ‘0’ for live while ‘1’ for spoofing faces, or vice versa)

bonafide versus PA

与常见的二分类视觉任务的不同点在于

  • self-evolving problem(attack vs. defense develop iteratively)
  • content-irrelevant (e.g., not related to facial attribute and ID)
  • subtle and with fine-grained details

very challenging to distinguish by even human eyes,性别二分类关注的是 semantic features,活检关注的是 arbitrary and unfaithful clues (e.g., screen bezel) for spoofing patterns,such intrinsic live/spoof clues are usually closely related with some position-aware auxiliary tasks.

存在的缺点:

  • these supervision signals only provide global (spatial/temporal) constraints for live/spoof embedding learning, which may causes FAS models to easily overfit to unfaithful patterns.

  • usually black-box and the characteristic of their learned features are hard to understand

2.2.2 Pixel-Wise Supervision

在这里插入图片描述

(1)Pixel-Wise Supervision With Auxiliary Task

provide more fine-grained and contextual task-related clues for better intrinsic feature learning,而不是 unfaithful patterns (e.g., screen bezel).

auxiliary supervision signals:

  • pseudo depth labels
  • binary mask labels——attack-type-agnostic and spatially interpretable
  • 3D point cloud map
  • Fourier spectra
  • reflection maps
  • ternary map
  • original face input reconstruction
  • pixel-wise reconstruction constraints
  • LBP texture map

存在的缺点:

  • usually relies on the high-quality (e.g., high-resolution) training data for fine grained spoof clue mining, and is harder to provide effective supervision signals when training data are too noisy and with low quality
  • the pseudo auxiliary labels are either human-designed or generated by other off-the-shelf algorithms, which are not always trustworthy

(2)Pixel-Wise Supervision With Generative Model

usually relaxes the expert-designed hard constraints (e.g.,auxiliary tasks), and leaves the decoder to reconstruct more natural spoof-related trace.

The generated spoof patterns are visually insightful, and are challenging to manually describe with human prior knowledge.

缺点

such soft pixel-wise supervision might easily fall into the local optimum and overfit on unexpected interference (e.g., sensor noise),

解决方式之一

Pixel-Wise Supervision With Generative Model + Pixel-Wise Supervision With Auxiliary Task

2.3 Generalized Deep Learning Method

在这里插入图片描述

Traditional end-to-end deep learning 缺点,下面场景会翻车

  • unseen dominant conditions——indicate the spoof irrelated external changes (e.g., lighting and sensor noise) but actually influence the appearance quality
  • unknown attack types——mean the novel attack types with intrinsic physical properties (e.g., material and geometry) which have not occurred in the training phase

Generalized Deep Learning Method

  • domain adaptation
  • generalization techniques
  • zero/few-shot learning
  • anomaly detection

2.3.1 Generalization to Unseen Domain

Domain adaptation(DA) vs Domain Generalization(DG)

在这里插入图片描述
一个需要无标签的 target domain 数据,一个不需要 target domain 的数据

(1)Domain adaptation(DA)

The distribution of source and target features are usually matched in a learned feature space

minimize the distribution discrepancy between the source and the target domain by utilizing unlabeled target data,

缺点

  • it is difficult and expensive to collect a lot of unlabeled target data
  • the source face data are usually inaccessible when deploying FAS models on the target domain

(2)Domain Generalization(DG)

缺点

domain generalization benefits FAS models to perform well in unseen domain, but it is still unknown whether it deteriorates the discrimination capability for spoofing detection under the seen scenarios.

2.3.2 Generalization to Unknown Attack Types

(1)Zero/Few-Shot Learning

缺点

few-shot learning 在 zero-shot case 场景会翻车

the failed detection usually occurs in the challenging attack types (e.g., transparent mask, funny eye, and makeup), which share similar appearance distribution with the bonafide

(2)Anomaly Detection

first trains a reliable one-class classifier to accurately cluster the live samples. Then any samples (e.g., unknown attacks) outside the margin of the live sample cluster would be detected as attacks

缺点

suffer from discrimination degradation compared with conventional live/spoof classification in the real-world open-set scenarios (i.e., both known and unknown attacks).

3 Deep FAS with Advanced Sensors

在这里插入图片描述

3.1 Uni-Modal Deep Learning Upon Specialized Sensor

在这里插入图片描述
绿色框还有个 medium 的评价,P < M < G < VG

NIR (900 to 1800nm), poor imaging quality in long distance

SWIR(940nm and 1450nm)

dynamic flash is sensitive under outdoor environments and is not user-friendly due to the long temporal activation time

3.2 Multi-Modal Deep Learning

(1)Multi-Modal Fusion

  • feature-level fusions
    modality features are usually extracted from separate branches with high computational cost
  • input-level fusions
  • decision-level fusions

(2)Cross-Modal Translation

pseudo modalities could be generated via cross-modality translation

missing modal data for multi-modal FAS

4 Discussion and Future Directions

the limitations of the current development

  • Limited live/spoof representation capacity with sub-optimal deep architectures, supervisions, and learning strategies
  • Evaluation under saturating and unpractical testing benchmarks and protocols
  • Isolating the anti-spoofing task on only the face area and physical attacks
  • Insufficient consideration about the interpretability and privacy issues

4.1 Architecture, Supervision and Interpretability

automatically search and find the best-suited temporal architectures especially for multi-modal usage

rich temporal context vs binary or pixel-wise supervision

More advanced feature visualization manners and fine-grained pixel-wise spoof segmentation should be developed for interpretable FAS

4.2 Representation Learning

transfer learning——缓解过拟合
disentangled learning——disentangle the intrinsic spoofing clues from the noisy representation
metric learning
self-supervised and semi-supervised learning

4.3 Real-World Open-Set FAS

GrandTest

4.4 Generic and Unified PA Detection

在这里插入图片描述

AFR-aware and FAS-aware

digital and physical attack types

4.5 Privacy-Preserved Training

federated learning

Last but no least

向「假脸」说 No:用OpenCV搭建活体检测器

活体检测的方法有很多,包括:

  • 纹理分析(Texture analysis),该方法计算了面部区域的局部二值模式(Local Binary Patterns,LBP),用 SVM 将面部分为真实面部和伪造面部;

  • 频率分析(Frequency analysis),比如检查面部的傅立叶域;

  • 可变聚焦分析(Variable focusing analysis),例如检查连续两帧间像素值的变化;

  • 启发式算法(Heuristic-Based algorithms),包括眼球运动、嘴唇运动和眨眼检测。这些算法试图追踪眼球运动和眨眼行为,来确保用户不是拿着谁的照片(因为照片不会眨眼也不会动嘴唇);

  • 光流算法(Optical Flow algorithm),即检测 3D 对象和 2D 平面产生的光流的属性和差异;

  • 3D 面部形状(3D face shape),类似于 iPhone 上的面部识别系统,这种算法可以让面部识别系统区分真实面部和其他人的照片或打印出来的图像;


暂时下载不到的文章 for free

  • Unknown presentation attack detection with face rgb images
  • Fake iris detection using structured light
  • FaceRevelio: a face liveness detection system for smartphones with a single front camera
  • Meaningful adversarial stickers for face recognition in physical world

阅读笔记

  • 【DDFD】《Multi-view Face Detection Using Deep Convolutional Neural Networks》(ICMR-2015)

  • 【IoU Loss】《UnitBox: An Advanced Object Detection Network》(ACM MM-2016)

  • 【FAS】《Face Anti-Spoofing Using Patch and Depth-Based CNNs》(IJCB-2017)

  • 【MLFP】《Face Presentation Attack with Latex Masks in Multispectral Videos》(CVPRW-2017)

  • 【Face Detection】《Face Detection using Deep Learning: An Improved Faster RCNN Approach》(Neurocomputing-2018)

  • 【GDConv】《MobileFaceNets:Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices》(CCBR-2018)

  • 【CASIA-SURF】《A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing》(CVPR-2019)

  • 【FAS-FRN】《Recognizing Multi-modal Face Spoofing with Face Recognition Networks》(CVPR-2019 workshop)

  • 【FaceBagNet】《FaceBagNet:Bag-of-local-features Model for Multi-modal Face Anti-spoofing》(CVPR-2019 workshop)

  • 【FeatherNets】《FeatherNets:Convolutional Neural Networks as Light as Feather for Face Anti-spoofing》(CVPR-2019 workshop)

  • 【WMCA】《Biometric Face Presentation Attack Detection with Multi-Channel Convolutional Neural Network》(TIFS-2019)

  • 【WebFace260M】《WebFace260M:A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition》(CVPR-2021)

  • 【EMFace】《EMface: Detecting Hard Faces by Exploring Receptive Field Pyramids》(arXiv-2021)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1424349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

幻兽帕鲁服务器游戏怎么升级版本?

幻兽帕鲁服务器游戏怎么升级版本&#xff1f;自建幻兽帕鲁服务器进入Palworld游戏提示“您正尝试加入的比赛正在运行不兼容的游戏版本&#xff0c;请尝试升级游戏版本”什么原因&#xff1f;这是由于你的客户端和幻兽帕鲁服务器版本不匹配&#xff0c;如何解决&#xff1f;更新…

pinctrl/gpio子系统(1)-pinctrl子系统介绍及驱动源码分析

1.简介 在如今的驱动开发工作中&#xff0c;实际上已经很少去对着寄存器手册进行驱动开发了&#xff0c;一般板子拿到手&#xff0c;已经有原厂的驱动开发工程师&#xff0c;在gpio子系统、pinctrl子系统中将自家芯片的引脚适配好了。 我们直接基于设备树已配置好的寄存器值&a…

jsonpath相关---JSONPath - 用于 JSON 的 XPath

一.简介 XML 的一个经常强调的优点是提供了大量工具来分析、转换和有选择地从 XML 文档中提取数据。XPath 就是这些强大的工具之一。 现在是时候想知道&#xff0c;是否需要像 XPath4JSON 这样的东西&#xff0c;以及它可以解决哪些问题。 无需特殊脚本&#xff0c;即可以交…

阿赵UE学习笔记——14、LOD

阿赵UE学习笔记目录   大家好&#xff0c;我是阿赵。   继续学习虚幻引擎的用法。这次看看虚幻引擎的Level Of Detail(LOD)的用法。 一、测试场景准备 用植物系统&#xff0c;在地形上面刷了好多草&#xff1a; 这个时候看一下网格&#xff0c;会发现网格比较多和密集。 …

中国的茶文化:历史、传统与生活

中国的茶文化&#xff1a;历史、传统与生活 一、引言 茶&#xff0c;这一神奇而古老的饮品&#xff0c;与中国的历史、文化和生活方式紧密相连。中国的茶文化&#xff0c;源远流长&#xff0c;博大精深&#xff0c;是中华文明的重要组成部分。它不仅是一种饮料&#xff0c;更是…

阿里云推出 3.x Java 探针,解锁应用观测与治理的全新姿势

作者&#xff1a;张铭辉、泮圣伟 前言 随着春节大促即将到来&#xff0c;为了确保线上业务高效稳定地运行&#xff0c;电商企业大多会对旗下关键业务应用进行多轮测试。通过模拟线上较高流量的请求&#xff0c;来观察服务性能的实际表现。以某企业的业务测试报告举例&#xf…

vue-cli初始化项目很慢?

第一种情况 大部分是由于npm的镜像源不是淘宝的 cmd输入npm config get registry查看是不是淘宝的&#xff0c;是的话看第二种情况试试不是的话输入npm config set registry https://registry.npm.taobao.org 第二种情况 vue-cli配置文件不是使用淘宝镜像源的 找到文件.vue…

sklearn 计算 tfidf 得到每个词分数

from sklearn.feature_extraction.text import TfidfVectorizer# 语料库 可以换为其它同样形式的单词 corpus [list(range(-5, 5)),list(range(-6,4)),list(range(12)),list(range(13))]# corpus [ # [Two, wrongs, don\t, make, a, right, .], # [The, pen, is, might…

深入浅出HBase:一文理解HBase基础概念(列存储、时间戳、key-value)、架构特点以及适合的使用场景

文章目录 一. HBase 数据模型1. 行存储与列式存储1.1. 行存储1.2. 列存储 2. HBase 数据模型2.1. 模型概览2.2. 列与列族2.3. 时间戳&#xff1a;定义数据版本2.4. HBase的Key-Value 三. HBase架构1. HBase读写流程简述2. HRegionServer内部内部数据流转&#xff1a;HRegion &l…

SparkStreaming---入门

文章目录 1.SparkStreaming简介1.1 流处理和批处理1.2 实时和离线1.3 SparkStreaming是什么1.4 SparkStreaming架构图 2.背压机制3.DStream案例实操 1.SparkStreaming简介 1.1 流处理和批处理 流处理和批处理是两种不同的数据处理方式&#xff0c;它们在处理数据的方式和特点…

【GameFramework框架】一、框架介绍

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 【GameFramework框架】系列教程目录&#xff1a; https://blog…

Flink 读取 Kafka 消息写入 Hudi 表无报错但没有写入任何记录的解决方法

博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维…

node,node-sass,sass-loader之间的版本关系

前言 安装配置node-sass 以及 sass-loader想必是很多前端的噩梦–一不小心又不成功还得装个半天。 下面说一下这个问题。 当然&#xff0c;你肯定遇到过&#xff1a; Node Sass version 9.0.0 is incompatible with ^4.0.0-这样的问题&#xff0c;这个也是因为三者关系对不上…

【HTML 基础】表单标签

文章目录 1. <form>2. <input>3. <select> 和 <option>4. <textarea>5. <button>结语 HTML 表单是互联网上交互性最强的元素之一&#xff0c;它允许用户输入、选择和提交数据。在这篇博客中&#xff0c;我们将介绍 HTML 中一些关键的表单标…

手把手教你写架构(java)篇

领取资源在文章末尾。 架构部分&#xff1a; 1. 分层架构&#xff08;Layered Architecture&#xff09;&#xff1a;将应用程序分解为多个逻辑层&#xff0c;每个层都有明确的职责。常见的分层包括表示层&#xff08;Presentation Layer&#xff09;、业务逻辑层&#xff08…

torchvision.models._utils.IntermediateLayerGetter()使用

torchvision.models._utils.IntermediateLayerGetter&#xff08;&#xff09;使用 源码如下&#xff1a; from collections import OrderedDictimport torch from torch import nnclass IntermediateLayerGetter(nn.ModuleDict):"""Module wrapper that ret…

电脑配置在哪里看?别错过这四个方法

在使用电脑的日常操作中&#xff0c;了解电脑的硬件和软件配置是解决问题、优化性能以及购买新硬件的关键。然而&#xff0c;对于一些用户来说&#xff0c;查看电脑配置可能是一个看似复杂的任务。幸运的是&#xff0c;有多种简便而直观的方法&#xff0c;让您能够轻松获取电脑…

【python】在python中使用单元测试unittest

在python中使用单元测试unittest 大家好&#xff0c;欢迎来到我的技术乐园&#xff01;今天&#xff0c;我们将一起踏入Python单元测试的奇妙旅程&#xff0c;探索这个让我们的代码更可靠、更强壮的令人愉快的世界。 前言&#xff1a;为什么单元测试如此重要&#xff1f; 在我…

如何访问 Oracle OKE 集群

OKE是Oracle Cloud提供的托管Kubernetes服务&#xff0c;为用户提供强大而灵活的容器编排平台。在本文中&#xff0c;我们将详细介绍如何有效地与OKE集群进行交互&#xff0c;包括访问集群的不同方式、管理访问权限以及执行常见操作的步骤。 1 安装oci命令 1.1 在Oracle Linux…

智慧城市行业盛会:2024北京国际智慧城市展览会(世亚智博会)

随着科技的飞速进步和人们生活水平的不断提高&#xff0c;智慧城市建设已经逐渐成为当今社会的重要议题。为了展示和推广国内外数字技术与新应用成果&#xff0c;引领数字产业发展新方向&#xff0c;积极推动5G、人工智能、大数据、云计算、物联网、移动互联网、元宇宙等新型数…