西瓜书读书笔记整理(十二) —— 第十二章 计算学习理论(下)

news2024/11/17 17:49:30

第十二章 计算学习理论(下)

    • 12.4 VC 维(Vapnik-Chervonenkis dimension)
      • 12.4.1 什么是 VC 维
      • 12.4.2 增长函数(growth function)、对分(dichotomy)和打散(shattering)
    • 12.5 Rademacher 复杂度
      • 12.5.1 引入 Rademacher 复杂度
      • 12.5.2 定义、定理、引理
    • 12.6 稳定性
      • 12.6.1 什么是稳定性
      • 12.6.2 泛化损失、经验损失、留一损失
      • 12.6.3 定义 12.10
      • 12.6.4 定理 12.8
      • 12.6.5 经验风险最小化(Empirical Risk Minimization, ERM)
      • 12.6.6 定理 12.9
    • 12.7 总结

12.4 VC 维(Vapnik-Chervonenkis dimension)

12.4.1 什么是 VC 维

VC维 是统计学和机器学习中的一个概念,用于衡量一个假设类(hypothesis class)的表示能力或复杂性。VC维描述了这个假设类可以拟合的样本集的最大大小,使得该假设类可以实现所有可能的二分类标签的组合。

12.4.2 增长函数(growth function)、对分(dichotomy)和打散(shattering)

增长函数 应该是最容易理解的,但是这里我还是摘抄一下原文给出的数学定义。

给定假设空间 H \mathcal{H} H 和示例集 D = { x 1 , x 2 , . . . , x m } D=\{\bm{x}_1,\bm{x}_2,...,\bm{x}_m\} D={x1,x2,...,xm} H \mathcal{H} H 中每个假设 h h h 都能对 D D D 中示例赋予标记,标记结果可表示为

h ∣ D = { ( h ( x 1 ) , h ( x 2 ) , … , h ( x m ) ) } \left.h\right|_D=\left\{\left(h\left(\boldsymbol{x}_1\right), h\left(\boldsymbol{x}_2\right), \ldots, h\left(\boldsymbol{x}_m\right)\right)\right\} hD={(h(x1),h(x2),,h(xm))}

随着 m m m 的增大, H \mathcal{H} H 中所有假设对 D D D 中的示例所能赋予标记的可能结果数也会增大。

定义 12.6 对所有 m ∈ N m \in \mathbb{N} mN,假设空间 H \mathcal{H} H 的增长函数 Π H ( m ) \Pi_{\mathcal{H}}(m) ΠH(m)

Π H ( m ) = max ⁡ { x 1 , … , x m } ⊆ X ∣ { ( h ( x 1 ) , … , h ( x m ) ) ∣ h ∈ H } ∣ (12.21) \Pi_{\mathcal{H}}(m)=\max _{\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\right\} \subseteq \mathcal{X}}\left|\left\{\left(h\left(\boldsymbol{x}_1\right), \ldots, h\left(\boldsymbol{x}_m\right)\right) \mid h \in \mathcal{H}\right\}\right| \tag{12.21} ΠH(m)={x1,,xm}Xmax{(h(x1),,h(xm))hH}(12.21)

增长函数 Π H ( m ) \Pi_{\mathcal{H}}(m) ΠH(m) 表示假设空间 H \mathcal{H} H m m m 个示例所能赋予标记的最大可能结果数。显然, H \mathcal{H} H 对示例所能赋予标记的可能结果数越大, H \mathcal{H} H 的表示能力越强,对学习任务的适应能力也越强。

因此,增长函数描述了假设空间 H \mathcal{H} H 的表示能力,由此反映出假设空间的复杂度

定理 12.2 对假设空间 H \mathcal{H} H m ∈ N m\in \mathbb{N} mN 0 < ϵ < 1 0<\epsilon<1 0<ϵ<1 和任意 h ∈ H h \in \mathcal{H} hH

P ( ∣ E ( h ) − E ^ ( h ) ∣ > ϵ ) ⩽ 4 Π H ( 2 m ) exp ⁡ ( − m ϵ 2 8 ) (12.22) P(|E(h)-\widehat{E}(h)|>\epsilon) \leqslant 4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^2}{8}\right) \tag{12.22} P(E(h)E (h)>ϵ)4ΠH(2m)exp(8mϵ2)(12.22)

假设空间 H \mathcal{H} H 中不同的假设对于 D D D 中示例赋予标记的结果可能相同,也可能不同;尽管 H \mathcal{H} H 可能包含无穷多个假设,但其对 D D D 中示例赋予标记的可能结果数是有限的:对 m m m 个示例,最多有 2 m 2^m 2m 个可能结果。对二分类问题来说, H \mathcal{H} H 中的假设对 D D D 中示例赋予标记的每种可能结果称为 D D D 的一种 “对分”。若假设空间 H \mathcal{H} H 能实现示例集 D D D 上的所有对分,即 Π H ( m ) = 2 m \Pi_{\mathcal{H}}(m)=2^m ΠH(m)=2m,则称示例集 D D D 能被假设空间 H \mathcal{H} H “打散”

定理12.2提供了一个关于假设空间 H \mathcal{H} H的期望风险和经验风险之间差距的概率上界。具体来说,它表明当样本容量足够大时,期望风险和经验风险之间的差距不会太大。
定理12.2的条件包括:

  • 假设空间 H \mathcal{H} H
  • 样本容量 m m m ,其中 m m m 是一个自然数;
  • 随机变量 ϵ \epsilon ϵ,满足 0 < ϵ < 1 0 < \epsilon < 1 0<ϵ<1
  • 任意的 h ∈ H h \in \mathcal{H} hH


定理12.2的结论是:

  • 当样本容量足够大时,期望风险 E ( h ) E(h) E(h)和经验风险 E ^ ( h ) \widehat{E}(h) E (h)之间的差距不大于 ϵ \epsilon ϵ的概率是有限的。
  • 具体来说,概率 P ( ∣ E ( h ) − E ^ ( h ) ∣ > ϵ ) P(|E(h) - \widehat{E}(h)| > \epsilon) P(E(h)E (h)>ϵ)不超过 4 π H ( 2 m ) exp ⁡ ( − m ϵ 2 8 ) 4 \pi_{\mathcal{H}}(2m) \exp(-\frac{m\epsilon^2}{8}) 4πH(2m)exp(8mϵ2)


这个定理对于机器学习的理论研究和实际应用非常重要。它提供了在随机抽样下,经验风险最小化策略能够保证泛化性能的数学依据。通过控制样本容量和误差 ϵ \epsilon ϵ,我们可以调整概率上界,从而在实际应用中选择合适的样本容量来保证一定的泛化性能。

现在我们可以正式定义 VC 维如下:

定义 12.7 假设空间 H \mathcal{H} H 的 VC 维是能被 H \mathcal{H} H 打散的最大示例集的大小,即
V C ( H ) = max ⁡ { m : Π H ( m ) = 2 m } (12.23) \mathrm{VC}(\mathcal{H})=\max \left\{m: \Pi_{\mathcal{H}}(m)=2^m\right\} \tag{12.23} VC(H)=max{m:ΠH(m)=2m}(12.23)

VC ( H ) = d \text{VC}(\mathcal{H})=d VC(H)=d 表明存在大小为 d d d 的示例集能被假设空间 H \mathcal{H} H 打散。

需要注意:

  • 并不是所有大小为 d d d 的示例集都能被假设空间 H \mathcal{H} H打散;
  • VC 维的定义与数据分布 D \mathcal{D} D 无关,数据分布 D \mathcal{D} D 未知时仍能计算出假设空间 H \mathcal{H} H 的VC维。

通常这样来计算 H \mathcal{H} H 的 VC 维:若存在大小为 d d d 的示例集能被 H \mathcal{H} H 打散,但不存在任何大小为 d + 1 d+1 d+1 的示例集能被 H \mathcal{H} H 打散,则 H \mathcal{H} H 的 VC 维是 d d d

定义12.6给出了假设空间 H \mathcal{H} H的增长函数 Π H ( m ) \Pi_{\mathcal{H}}(m) ΠH(m)的定义。增长函数描述了随着样本容量 m m m的增加,假设空间 H \mathcal{H} H中可能产生的不同输出值的数量的变化情况。

具体来说,对于给定的样本集 { x 1 , x 2 , … , x m } ⊆ X \{x_1, x_2, \ldots, x_m\} \subseteq \mathcal{X} {x1,x2,,xm}X,假设空间 H \mathcal{H} H的增长函数 Π H ( m ) \Pi_{\mathcal{H}}(m) ΠH(m)定义为 H \mathcal{H} H中所有可能的输出向量 ( h ( x 1 ) , h ( x 2 ) , … , h ( x m ) ) (h(x_1), h(x_2), \ldots, h(x_m)) (h(x1),h(x2),,h(xm))的最大数量,其中 h ∈ H h \in \mathcal{H} hH

这个定义反映了随着样本容量的增加,假设空间 H \mathcal{H} H中可能存在的不同输出组合的数量。增长函数的性质对于理解VC维和样本容量的选择有着重要的影响。在机器学习中,我们希望增长函数的值不要增长过快,因为这将导致VC维过大,使得模型过于复杂,容易过拟合。同时,我们也希望增长函数的值不要太小,因为这将限制模型的表达能力,使其无法很好地拟合数据。

在这里插入图片描述
在这里插入图片描述

引理 12.2 若假设空间 H \mathcal{H} H 的 VC 维为 d d d,则对任意 m ∈ N m\in \mathbb{N} mN

Π H ( m ) ⩽ ∑ i = 0 d ( m i ) (12.24) \Pi_{\mathcal{H}}(m) \leqslant \sum_{i=0}^d\left(\begin{array}{c} m \\i \end{array}\right) \tag{12.24} ΠH(m)i=0d(mi)(12.24)

这个公式涉及到 VC维(VC dimension),这是一个在机器学习理论中常用的术语,用于描述一个假设类的复杂度。VC维是一个假设类能够“划分”(shatter)的最大集合的大小。在这个引理中,它给出了对于具有VC维为 d d d 的假设空间 H \mathcal{H} H,在 m m m 个样本上的划分可能性的上界。

假设我们有一个假设空间 H \mathcal{H} H,它的 VC维为 d = 2 d=2 d=2。这意味着 H \mathcal{H} H 能够划分的最大点集的大小为 2。现在考虑一个包含 3 个点的数据集 S = x 1 , x 2 , x 3 S={x_1, x_2, x_3} S=x1,x2,x3

根据公式,我们可以计算 H \mathcal{H} H S S S 上的划分可能性:

Π H ( 3 ) ≤ ∑ i = 0 2 ( 3 i ) = ( 3 0 ) + ( 3 1 ) + ( 3 2 ) = 1 + 3 + 3 = 7 \Pi_{\mathcal{H}}(3) \leq \sum_{i=0}^{2}\binom{3}{i} = \binom{3}{0} + \binom{3}{1} + \binom{3}{2} = 1 + 3 + 3 = 7 ΠH(3)i=02(i3)=(03)+(13)+(23)=1+3+3=7

这意味着 H \mathcal{H} H S S S 上有最多7种可能的划分方式。实际上,对于VC维为2的假设空间,我们可以列出以下7种划分:

  1. 将所有点分为同一类。
  2. x 1 x_1 x1 x 2 x_2 x2 分为一类,x3分为另一类。
  3. x 1 x_1 x1 x 3 x_3 x3 分为一类,x2分为另一类。
  4. x 2 x_2 x2 x 3 x_3 x3 分为一类,x1分为另一类。
  5. x 1 x_1 x1 分为一类, x 2 x_2 x2 x 3 x_3 x3 分为另一类。
  6. x 2 x_2 x2 分为一类, x 1 x_1 x1 x 3 x_3 x3 分为另一类。
  7. x 3 x_3 x3 分为一类, x 1 x_1 x1 x 2 x_2 x2 分为另一类。

这些划分展示了 H \mathcal{H} H S S S 上的最大划分能力。这个例子说明了如何使用公式来计算给定假设空间在特定数据集上的划分可能性。

在机器学习理论中,这个公式可以用来分析假设空间的复杂度,以及它对过拟合风险的影响。例如,如果一个假设空间的VC维较小,那么它在训练数据上的划分可能性就有限,这通常意味着模型的泛化性能较好。反之,如果VC维较大,那么模型可能会过度拟合训练数据,导致在新数据上的表现不佳。

右边的求和表示从 0 0 0 d d d 的二项式系数之和,其中 ( m i ) \binom{m}{i} (im)表示从 m m m 个元素中选择 i i i 个元素的组合数。这个公式表明,当假设空间的VC维为 d d d 时,最多可以有 ∑ i = 0 d ( m i ) \sum_{i=0}^{d}\binom{m}{i} i=0d(im) 种不同的划分方式。

推论 12.2 若假设空间 H \mathcal{H} H 的 VC 维为 d d d, 则对任意整数 m ⩾ d m \geqslant d md
Π H ( m ) ⩽ ( e ⋅ m d ) d (12.28) \Pi_{\mathcal{H}}(m) \leqslant\left(\frac{e \cdot m}{d}\right)^d \tag{12.28} ΠH(m)(dem)d(12.28)

根据推论 12.2 和定理 12.2 可得基于 VC 维的泛化误差界:

定理 12.3 若假设空间 H \mathcal{H} H 的 VC 维为 d d d,则对任意 m > d m > d m>d 0 < δ < 1 0<\delta<1 0<δ<1 h ∈ H h\in \mathcal{H} hH

P ( E ( h ) − E ^ ( h ) ⩽ 8 d ln ⁡ 2 e m d + 8 ln ⁡ 4 δ m ) ⩾ 1 − δ (12.29) P\left(E(h)-\widehat{E}(h) \leqslant \sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}\right) \geqslant 1-\delta \tag{12.29} P E(h)E (h)m8dlnd2em+8lnδ4 1δ(12.29)

由定理 12.3 可知,式 (12.29) 的泛化误差界只与样本数目 m m m 有关,收敛速率为 O ( 1 m ) O(\frac{1}{\sqrt{m}}) O(m 1),与数据分布 D D D和样本集 D D D无关。因此,基于VC维的泛化误差界是分布无关(distribution-free)、数据独立(data-independent)的。

定理 12.4 任何 VC 维有限的假设空间 H \mathcal{H} H 都是(不可知)PAC 可学习的。

关于 VC维 、 PAC可学习性、不可知学习 前面章节已经详细介绍,结合以上概念,我们可以理解这句话的意思是:如果一个假设空间 H \mathcal{H} H 的 VC维是有限的,那么存在一个学习算法,可以从有限的训练数据中学习到一个假设,使得该假设在未知的真实数据上的泛化误差(以概率至少为 1 − δ 1-\delta 1δ)小于 ϵ \epsilon ϵ。这个结论意味着,只要假设空间的复杂度(由VC维衡量)是有限的,那么就可以找到一个学习算法,在多项式时间内从有限的训练数据中学习到一个近似正确的假设。

12.5 Rademacher 复杂度

12.5.1 引入 Rademacher 复杂度

12.4 节提到,基于VC维的泛化误差界是分布无关、数据独立的,也就是说,它对任何数据分布都成立。这使得基于VC维的学习性分析结果具有一定的“普适性”;但另一方面,由于没有考虑数据自身,基于VC维得到的泛化误差界通常比较“松”,对那些与学习问题的典型情况相差甚远的较“坏”分布来说尤其如此。

Rademacher 复杂度是另一种刻画假设空间复杂度的方法,与VC维不同的是,它在一定程度上考虑了数据分布

12.5.2 定义、定理、引理

Rademacher 复杂度是一个用来衡量假设空间 F \mathcal{F} F 复杂度的概念,它通过随机扰动训练数据来估计一个函数类在实际数据上的期望性能。具体来说,Rademacher复杂度定义如下:

Z \mathcal{Z} Z是输入空间, F \mathcal{F} F是一个假设空间, Z = { z 1 , z 2 , … , z m } Z = \{\bm{z}_1, \bm{z}_2, \dots, \bm{z}_m\} Z={z1,z2,,zm}是从 Z \mathcal{Z} Z 中取样得到的有限训练集。Rademacher 复杂度 R ^ Z ( F ) \hat{R}_Z(\mathcal{F}) R^Z(F)定义为:

R ^ Z ( F ) = E σ [ sup ⁡ f ∈ F ∣ 1 m ∑ i = 1 m σ i f ( z i ) ∣ ] (12.40) \hat{R}_Z(\mathcal{F}) = \mathbb{E}_{\sigma} \left[ \sup_{f \in \mathcal{F}} \left| \frac{1}{m} \sum_{i=1}^m \sigma_i f(\bm{z}_i) \right| \right] \tag{12.40} R^Z(F)=Eσ[fFsup m1i=1mσif(zi) ](12.40)

其中, σ = ( σ 1 , σ 2 , … , σ m ) \sigma = (\sigma_1, \sigma_2, \dots, \sigma_m) σ=(σ1,σ2,,σm)是一个随机变量序列,每个 σ i \sigma_i σi独立地取值于 { − 1 , 1 } \{-1, 1\} {1,1} R ^ m ( Z ) \hat{R}_m(Z) R^m(Z)表示在随机选择的扰动下,假设空间 F \mathcal{F} F中函数的期望最大偏差。

Rademacher复杂度提供了一种衡量假设空间复杂性的方法,它考虑了数据分布的影响,因为它依赖于训练数据集 S \mathcal{S} S。通过研究Rademacher复杂度,可以更好地理解假设空间的复杂性如何影响学习算法的泛化性能。在机器学习理论中,Rademacher复杂度被广泛用于分析学习算法的性能,特别是在支持向量机(SVM)和神经网络等复杂模型的研究中。

定义 12.9 函数空间 F 关于 Z 上分布 D 的 Rademacher 复杂度

R m ( F ) = E Z ⊆ Z : ∣ Z ∣ = m [ R ^ Z ( F ) ] . (12.41) R_m(\mathcal{F}) = \mathbb{E}_{Z \subseteq \mathcal{Z}: |Z|=m} [ \widehat{R}_Z(\mathcal{F}) ]. \tag{12.41} Rm(F)=EZZ:Z=m[R Z(F)].(12.41)

定理 12.5 对实值函数空间 F : Z → [ 0 , 1 ] \mathcal{F}: \mathbb{Z} \rightarrow [0,1] F:Z[0,1], 根据分布 D \mathcal{D} D Z \mathbb{Z} Z 中独立同分布采样得到示例集 Z = { z 1 , z 2 , … , z m } Z = \{\bm{z}_1, \bm{z}_2, \ldots, \bm{z}_m\} Z={z1,z2,,zm}, z i ∈ Z z_i \in \mathbb{Z} ziZ, 0 < δ < 1 0 < \delta < 1 0<δ<1, 对任意 f ∈ F f \in \mathcal{F} fF, 以至少 1 − δ 1-\delta 1δ 的概率有

E [ f ( z ) ] ⩽ 1 m ∑ i = 1 m f ( z i ) + 2 R m ( F ) + ln ⁡ ( 1 / δ ) 2 m (12.42) \mathbb{E}[f(\boldsymbol{z})] \leqslant \frac{1}{m} \sum_{i=1}^m f\left(\boldsymbol{z}_i\right)+2 R_m(\mathcal{F})+\sqrt{\frac{\ln (1 / \delta)}{2 m}} \tag{12.42} E[f(z)]m1i=1mf(zi)+2Rm(F)+2mln(1/δ) (12.42)
其中, 1 m ∑ i = 1 m f ( z i ) \frac{1}{m} \sum_{i=1}^m f(z_i) m1i=1mf(zi) 是经验均值, R m ( F ) R_m(\mathcal{F}) Rm(F) 是经验风险上界,而 ln ⁡ ( 1 / δ ) 2 m \sqrt{\frac{\ln(1/\delta)}{2m}} 2mln(1/δ) 是一个随机项,它与置信水平 δ \delta δ 相关。

E [ f ( z ) ] ⩽ 1 m ∑ i = 1 m f ( z i ) + 2 R ^ Z ( F ) + 3 ln ⁡ ( 2 / δ ) 2 m (12.43) \mathbb{E}[f(\boldsymbol{z})] \leqslant \frac{1}{m} \sum_{i=1}^m f\left(\boldsymbol{z}_i\right)+2 \widehat{R}_Z(\mathcal{F})+3 \sqrt{\frac{\ln (2 / \delta)}{2 m}} \tag{12.43} E[f(z)]m1i=1mf(zi)+2R Z(F)+32mln(2/δ) (12.43)

其中, 1 m ∑ i = 1 m f ( z i ) \frac{1}{m} \sum_{i=1}^m f(z_i) m1i=1mf(zi) 是经验均值, R ^ Z ( F ) \widehat{R}_Z(\mathcal{F}) R Z(F) 是经验风险上界,而 ln ⁡ ( 2 / δ ) 2 m \sqrt{\frac{\ln(2/\delta)}{2m}} 2mln(2/δ) 是一个随机项,它与置信水平 δ \delta δ 相关。

定理 12.5 提供了对实值函数空间 F : Z → [ 0 , 1 ] \mathcal{F} : \mathbb{Z} \to [0, 1] F:Z[0,1] 上的期望函数 E [ f ( z ) ] \mathbb{E}[f(z)] E[f(z)] 的上界,其中 z ∈ Z z \in \mathbb{Z} zZ 0 < δ < 1 0 < \delta < 1 0<δ<1,并且样本集 Z = { z 1 , z 2 , … , z m } Z = \{z_1, z_2, \dots, z_m\} Z={z1,z2,,zm} 是根据分布 D \mathcal{D} D Z \mathbb{Z} Z 中独立同分布采样的。定理保证了对于任意的 f ∈ F f \in \mathcal{F} fF,至少有概率 1 − δ 1 - \delta 1δ 满足以下两个不等式:

这两个不等式都涉及到经验风险上界和随机项,它们反映了经验风险和期望风险之间的关系。这些不等式对于理解和估计未知分布上的期望函数具有重要意义,特别是在有限样本的情况下。通过这些不等式,我们可以获得关于期望函数的一个上界,从而对未知分布有一个更好的估计。

定理 12.6 对假设空间 H : X → { − 1 , + 1 } \mathcal{H}: \mathcal{X} \to \{-1,+1\} H:X{1,+1},根据分布 D \mathcal{D} D X \mathcal{X} X 中独立同分布采样得到样本集 D = { x 1 , x 2 , … , x m } \mathcal{D} = \{\bm{x}_1, \bm{x}_2, \dots, \bm{x}_m\} D={x1,x2,,xm} x i ∈ X \bm{x}_i \in \mathcal{X} xiX 0 < δ < 1 0 < \delta < 1 0<δ<1,对任意 h ∈ H h \in \mathcal{H} hH,以至少 1 − δ 1 - \delta 1δ 的概率有

E ( h ) ≤ E ^ ( h ) + R m ( H ) + ln ⁡ ( 1 / δ ) 2 m (12.47) E(h) \leq \hat{E}(h) + R_m(\mathcal{H}) + \sqrt{\frac{\ln(1/\delta)}{2m}} \tag{12.47} E(h)E^(h)+Rm(H)+2mln(1/δ) (12.47)

E ( h ) ≤ E ^ ( h ) + R ^ D ( H ) + 3 ln ⁡ ( 2 / δ ) 2 m (12.48) E(h) \leq \hat{E}(h) + \widehat{R}_D(\mathcal{H}) + 3\sqrt{\frac{\ln(2/\delta)}{2m}} \tag{12.48} E(h)E^(h)+R D(H)+32mln(2/δ) (12.48)

这个定理给出了在假设空间 H \mathcal{H} H 中,当从分布 D \mathcal{D} D 中独立同分布采样得到样本集 D \mathcal{D} D 时,期望函数 E ( h ) E(h) E(h) 的上界。定理中的两个不等式分别考虑了经验风险 R m ( H ) R_m(\mathcal{H}) Rm(H) 和分布风险 R ^ D ( H ) \widehat{R}_D(\mathcal{H}) R D(H) 的情况。
基于 Rademacher 复杂度的泛化误差界依赖于具体学习问题上的数据分布,有点类似于为该学习问题“量身定制”的,因此它通常比基于 VO 维的泛化误差界更紧一些.

定理 12.7 假设空间 H \mathcal{H} H 的 Rademacher 复杂度 R m ( H ) R_m(\mathcal{H}) Rm(H) 与增长函数 Π H ( m ) \Pi_{\mathcal{H}}(m) ΠH(m) 满足:

R m ( H ) ⩽ 2 ln ⁡ Π H ( m ) m (12.52) R_m(\mathcal{H}) \leqslant \sqrt{\frac{2\ln \Pi_{\mathcal{H}}(m)}{m}} \tag{12.52} Rm(H)m2lnΠH(m) (12.52)

这个定理给出了假设空间 H \mathcal{H} H 的 Rademacher 复杂度 R m ( H ) R_m(\mathcal{H}) Rm(H) 与增长函数 Π H ( m ) \Pi_{\mathcal{H}}(m) ΠH(m) 之间的关系。根据公式 ( 12.52 ) (12.52) (12.52),Rademacher 复杂度被上界为增长函数的对数的平方根除以样本数量。

12.6 稳定性

12.6.1 什么是稳定性

12.6.2 泛化损失、经验损失、留一损失

泛化损失 刻画了假设 L D \mathfrak{L}_D LD 的预测标记 L D ( x ) \mathfrak{L}_D(\bm{x}) LD(x) 与真实标记 y y y 之间的差别,简记为 ℓ ( L D , z ) \ell(\mathfrak{L}_D,\bm{z}) (LD,z)

ℓ ( L , D ) = E x ∈ X , z = ( x , y ) [ ℓ ( L D , z ) ] (12.54) \ell(\mathfrak{L}, \mathcal{D}) = \mathbb{E}_{\bm{x} \in \mathcal{X}, \bm{z} = (\bm{x}, y)} [\ell(\mathfrak{L}_D, \bm{z})] \tag{12.54} (L,D)=ExX,z=(x,y)[(LD,z)](12.54)

12.6.3 定义 12.10

定义 12.10 对于任何 x ∈ X x \in X xX, z = ( x , y ) z = (x, y) z=(x,y), 如果学习算法 L \mathcal{L} L 满足:

∣ l ( L D , z ) − l ( L D ∖ i , z ) ∣ ≤ β ,    i = 1 , 2 , … , m , (12.57) |l(\mathfrak{L}_D, z) - l(\mathfrak{L}_{D \setminus i}, z)| \leq \beta, \; i = 1, 2, \ldots, m, \tag{12.57} l(LD,z)l(LDi,z)β,i=1,2,,m,(12.57)

则称 L \mathfrak{L} L 关于损失函数 l l l 满足 β \beta β-均匀稳定性。

这里, L D \mathcal{L}_D LD 表示使用数据集 D D D 训练得到的学习器,而 L D ∖ i \mathcal{L}_{D \setminus i} LDi 表示使用除了第 i i i 个样本外的数据集 D D D 训练得到的学习器。

12.6.4 定理 12.8

定理 12.8 给定从分布 D \mathcal{D} D 上独立同分布采样得到的大小为 m m m 的示例集 D D D,若学习算法 L \mathfrak{L} L 满足关于损失函数 ℓ \ell β \beta β-均匀稳定性,且损失函数 ℓ \ell 的上界为 M M M 0 < δ < 1 0 < \delta < 1 0<δ<1,则对任意 m ≥ 1 m \geq 1 m1,以至少 1 − δ 1 - \delta 1δ 的概率有

ℓ ( L , D ) ⩽ ℓ ^ ( L , D ) + 2 β + ( 4 m β + M ) ln ⁡ ( 1 / δ ) 2 m (12.58) \ell(\mathfrak{L}, \mathcal{D}) \leqslant \hat{\ell}(\mathfrak{L}, \mathcal{D}) + 2\beta + \left(4m\beta + M\right)\sqrt{\frac{\ln(1/\delta)}{2m}} \tag{12.58} (L,D)^(L,D)+2β+(4mβ+M)2mln(1/δ) (12.58)

ℓ ( L , D ) ⩽ ℓ l o o ( L , D ) + β + ( 4 m β + M ) ln ⁡ ( 1 / δ ) 2 m (12.59) \ell(\mathfrak{L}, \mathcal{D}) \leqslant \ell_{loo}(\mathfrak{L}, \mathcal{D}) + \beta + \left(4m\beta + M\right)\sqrt{\frac{\ln(1/\delta)}{2m}} \tag{12.59} (L,D)loo(L,D)+β+(4mβ+M)2mln(1/δ) (12.59)

这个定理给出了学习算法 L \mathfrak{L} L 在满足 β \beta β-均匀稳定性和损失函数 ℓ \ell 的上界为 M M M 的情况下,对于任意大小为 m m m 的示例集 D \mathcal{D} D,以至少 1 − δ 1 - \delta 1δ 的概率,其损失函数 ℓ \ell 的上界。

12.6.5 经验风险最小化(Empirical Risk Minimization, ERM)

对损失函数 ℓ \ell ,若学习算法 L \mathfrak{L} L 所输出的假设满足经验损失最小化,则称算法 L \mathfrak{L} L 满足 经验风险最小化 (Empirical Risk Minimization) 原则,简称算法是 ERM 的。

在机器学习中,结构风险是一个模型的复杂度与泛化误差之间的权衡。它是指一个模型在处理未知数据时可能产生的预测误差,即模型在新数据上的表现。结构风险通常包括模型的复杂度和训练数据的噪声等因素。

结构风险最小化(Structured Risk Minimization, SRM)是一种机器学习中的学习策略,它试图找到一个既能很好地拟合训练数据又能保持低复杂度的模型。简单来说,结构风险最小化的目标是在训练误差和模型复杂度之间取得平衡,以获得更好的泛化能力。

与经验风险最小化(Empirical Risk Minimization, ERM)不同,经验风险最小化只关注模型在训练数据上的表现,而结构风险最小化考虑了模型的复杂度,试图避免过拟合问题。通过引入正则化项或其他复杂度惩罚机制,结构风险最小化可以控制模型的复杂度,从而提高模型在新数据上的性能。

因此,结构风险最小化是一种更全面的学习策略,它不仅考虑了模型在训练数据上的表现,还考虑了模型的复杂度,以提高模型的泛化能力。

12.6.6 定理 12.9

定理 12.9 若学习算法 L \mathfrak{L} L 是 ERM 且稳定的,则假设空间 H \mathcal{H} H 可学习。

12.7 总结

从 PAC 学习到 VC 维,再到 Rademacher 复杂度,最后以稳定性收尾,这些都纯属理论研究,对于绝大多数人来说,非常的无趣且乏味。尤其是使用一堆符号进行推导,最后得出其他的符号表达式的过程中。

篇幅+本人能力有限,这里完全不含任何定理的推导过程。主要想描述一下有这个定义、定理、推论存在,并且希望自己能理解并将自己的理解记录下来。

理论研究是推动创建的基础,并且指导着实际活动,有助于我们深入理解现象的本质和规律。愿你们也能在被一堆符号惹恼以后能够感受它们的魅力 ~

Smileyan
2024.01.31 23:06

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1423316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python算法题集_合并区间

本文为Python算法题集之一的代码示例 题目56&#xff1a;合并区间 说明&#xff1a;以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需…

CANoe实际项目中文件夹的规划

本人&#xff0c;之前设计了一个CANoe工程&#xff0c;由于工程设计之初没有设计好文档的归纳分类&#xff0c;导致文件查找起来非常费劲。 为了避免以后出现文件混乱&#xff0c;不可查找的问题&#xff0c;故特此归纳说明。 建立工程时&#xff1a; 第1步就应该设计好文档…

品牌定位传播之道:公关、广告与定位原则的结合

​在当今商业环境中&#xff0c;品牌传播的重要性日益凸显。一个成功的品牌传播策略不仅能提升品牌知名度和美誉度&#xff0c;还能在消费者心智中建立稳固的地位。本文将深入探讨公关、广告和定位原则在品牌传播中的作用&#xff0c;以及迅腾文化如何助力品牌传播价值。 一、…

miniReact<一>

一、工程化配置 1.1 目录结构 1.1.1 Multi-repo VS Mono-repo Multi-repo 每个库有自己独立的仓库&#xff0c;逻辑清晰&#xff0c;协同管理复杂 Mono-repo 很方便管理不同独立的库的生命周期&#xff0c;会有更高的操作复杂度 项目有很多包&#xff0c;同时管理多个不同的…

iOS开发Xcode中的ld64和-ld_classic是什么意思

在iOS应用程序开发中&#xff0c;Xcode是一款广泛使用的集成开发环境&#xff08;IDE&#xff09;&#xff0c;而链接器是构建应用程序的关键组成部分之一。在Xcode中&#xff0c;我们常常会遇到两个重要的概念&#xff1a;ld64和-ld_classic。它们分别代表了默认链接器和经典链…

Shell脚本之 -------------免交互操作

一、Here Document 1.Here Document概述 Here Document 使用I/O重定向的方式将命令列表提供给交互式程序 Here Document 是标准输 入的一种替代品&#xff0c;可以帮助脚本开发人员不必使用临时文件来构建输入信息&#xff0c;而是直接就地 生产出一个文件并用作命令的标准…

JVM篇----第十八篇

系列文章目录 文章目录 系列文章目录前言一、什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”?二、对象分配规则三、描述一下JVM加载class文件的原理机制?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到…

springboot综合案例(一)

文章目录 前言项目开发流程需求分析库表设计编码环节环境搭建mybatis的配置jsp模版引擎的配置日志的配置基本项目工程的配置 功能实现用户注册实现验证码功能实现用户注册 用户登录功能员工列表实现员工信息增删查改员工增加信息员工修改信息删除员工信息 前言 我具体用一个小…

InputNumber数字输入框(antd-design组件库)简单使用

1.InputNumber数字输入框 通过鼠标或键盘&#xff0c;输入范围内的数值。 2.何时使用 当需要获取标准数值时。 组件代码来自&#xff1a; 数字输入框 InputNumber - Ant Design 3.本地验证前的准备 参考文章【react项目antd组件-demo:hello-world react项目antd组件-demo:hello…

震动传感器详解

当涉及到物体的震动检测和感应时&#xff0c;震动模块成为一种常见且实用的工具。这种小巧而功能强大的设备可以用于各种应用&#xff0c;从智能家居到安防系统&#xff0c;再到工业自动化等领域。通过感知和转换物体震动为电信号&#xff0c;震动模块在许多方面都发挥着重要的…

chromedriver安装和环境变量配置

chromedriver 1、安装2、【重点】环境变量配置&#xff08;1&#xff09;包的复制&#xff1a;&#xff08;2&#xff09;系统环境变量配置 3、验证 1、安装 网上随便搜一篇chromedriver的安装文档即可。这里是一个快速链接 特别提醒&#xff1a;截止2024.1.30&#xff0c;chr…

Springboot+vue的健身房管理系统(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的健身房管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的健身房管理系统&#xff0c;采用M&#xff08;model&#xf…

老师和老师的区别在哪里

“老师和老师的区别在哪里&#xff1f;”这真是个好问题。有时我会想&#xff0c;是不是因为自己多读了几本书&#xff0c;或者多经历了一些世事&#xff0c;就能更好地胜任教育工作。但实际上&#xff0c;老师和老师的区别&#xff0c;并不仅仅在于经验和知识&#xff0c;更在…

语言革命:NLP与GPT-3.5如何改变我们的世界

文章目录 &#x1f4d1;前言一、技术进步与应用场景1.1 技术进步1.2 应用场景 二、挑战与前景三、伦理和社会影响四、实践经验五、总结与展望 &#x1f4d1;前言 自然语言处理&#xff08;Natural Language Processing&#xff0c;NLP&#xff09;是人工智能领域的一个重要分支…

【Linux】线程池的简易实现(懒汉模式)

文章目录 前言一、懒汉方式1.普通模式1.线程安全模式 二、源代码1.Task.hpp(要执行的任务)2.ThreadPool.hpp(线程池)3.Main.cpp 前言 线程池: 一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监…

生产问题排查系列——redis告警连接异常问题排查

项目背景 我们的项目使用redis的场景主要是有两种&#xff0c;一是使用redis缓存各种业务信息&#xff0c;二是使用redis做分布式锁。主要是引用了两个框架jedis和redisson。 Jedis是Redis的Java实现的客户端&#xff0c;其API提供了比较全面的Redis命令的支持&#xff1b; …

【linux】文本处理命令-grep、awk、sed使用(1)

作用&#xff1a; grep数据查找定位awk数据切片sed数据修改 类比SQL&#xff1a; grepselect *from tableawkselect field from tablesedupdate table set fieldnew where fieldold 一、grep 1.1 grep* Unix的grep家族包括grep、egrep和fgrep。egrep和fgrep的命令只跟g…

房屋租赁系统-java

思维导图&#xff1a;业务逻辑 类的存放&#xff1a; 工具类 Utility package study.houserent.util; import java.util.*; /***/ public class Utility {//静态属性。。。private static Scanner scanner new Scanner(System.in);/*** 功能&#xff1a;读取键盘输入的一个菜单…

STM32 RTC中断处理和低功耗模式优化技巧

在基于STM32的RTC应用中&#xff0c;中断处理和低功耗模式优化是非常重要的&#xff0c;可以提高系统的效率和节能。下面&#xff0c;我将介绍STM32 RTC中断处理和低功耗模式优化的技巧。 ✅作者简介&#xff1a;热爱科研的嵌入式开发者&#xff0c;修心和技术同步精进 ❤欢迎关…

【蓝桥杯冲冲冲】进阶搜索 Anya and Cubes

蓝桥杯备赛 | 洛谷做题打卡day22 文章目录 蓝桥杯备赛 | 洛谷做题打卡day22Anya and Cubes题面翻译输入格式输出题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 样例 #3样例输入 #3样例输出 #3 提示题解代码我的一些话 Anya and Cubes …