深度强化学习(王树森)笔记04

news2024/11/17 1:43:52

深度强化学习(DRL)

本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。

参考链接

Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL

源代码链接:https://github.com/DeepRLChinese/DeepRL-Chinese

B站视频:【王树森】深度强化学习(DRL)

豆瓣: 深度强化学习

文章目录

  • 深度强化学习(DRL)
  • Actor-Critic Method
    • 视频
      • Value Network and Policy Network
      • Train the Neural Networks
      • Summary
      • 价值网络
      • 算法推导
      • 训练流程
      • 用目标网络改进训练
      • 本章总结
    • 后记

Actor-Critic Method

Actor-Critic方法把价值学习和策略学习结合起来。

视频

下面是视频的学习笔记

Value Network and Policy Network

离散状态下状态价值函数可以写成: V π ( s ) = ∑ a π ( a ∣ s ) ⋅ Q π ( s , a ) . V_{\pi}(s)=\sum_{a}\pi(a|s)\cdot Q_{\pi}(s,a). Vπ(s)=aπ(as)Qπ(s,a).

但是其中策略函数 π ( a ∣ s ) \pi(a|s) π(as)和动作价值函数 Q π ( s , a ) Q_{\pi}(s,a) Qπ(s,a)都不知道,可以分别用两个神经网络进行近似,这两个神经网络分别称为策略网络和价值网络,在表述形式上里面分别添加了一个 θ \theta θ w w w参数,表示的是神经网络的参数。

策略网络控制agent运动,是actor,相当于是运动员;价值网络不控制agent运动,它负责给agent打分,是critic,相当于裁判。

在这里插入图片描述

分别看一下这两个神经网络

策略网络actor,它只有一个输入state,输出是所有action的概率分布。

在这里插入图片描述

价值网络critic,有两个输入,分别是state和action;输出是一个标量,表示的是对actor的打分。

在这里插入图片描述

同时学习一个策略和一个值函数就是actor-critic方法。

Train the Neural Networks

训练 π \pi π网络是提高actor的平均分,即让状态价值函数V函数的值更大;让价值网络q来当裁判,给actor的表现打分,更新它的参数 w w w是为了让它的打分越来越精准。通过两个网络,让运动员的得分越来越高,裁判的打分越来越精准。

在这里插入图片描述

通过以下五个步骤来对 θ \theta θ w w w参数进行更新

  1. Observe the state s t . s_t. st.
  2. Randomly sample action α t \color{red}{\alpha_t} αt according to π ( ⋅ ∣ s t ; θ t ) . \pi(\cdot|s_t;\mathbf{\theta}_t). π(st;θt).
  3. Perform a t \color{red}{a_t} at and observe new state s t + 1 s_{t+1} st+1 and reward r t . r_t. rt.
  4. Update w (in value network) using temporal difference (TD).
  5. Update θ \mathbf{\theta} θ (in policy network) using policy gradient.

在这里插入图片描述

使用时间差分TD算法更新价值网络q,让裁判打分更准

损失函数是预测q和target y t y_t yt之间差的平方

在这里插入图片描述

使用策略梯度算法更新策略网络 π \pi π,让运动员得分更高

下图中的V是状态价值函数,相当于运动员所有动作的平均分

策略梯度是状态价值函数V关于 θ \theta θ的导数

定义g是 l o g π log\pi logπ θ \theta θ的导数乘以q,这里q是裁判的打分

策略梯度等于对函数g求期望,消掉动作A。

g函数是策略梯度的无偏估计,用g函数代替策略梯度

然后使用随机梯度上升算法来更新 θ \theta θ的值。

在这里插入图片描述

ChatGPT:补充梯度的概念

在数学和计算机科学中,梯度是一个向量,表示一个多元函数在某一点上的变化率和变化的方向。对于一个具有多个输入变量的函数,梯度给出了该函数对每个输入变量的偏导数。

考虑一个函数 ( f ( x 1 , x 2 , … , x n ) f(x_1, x_2, \ldots, x_n) f(x1,x2,,xn)),其梯度记为 ( ∇ f \nabla f f) 或者 ( ∂ f ∂ x \frac{\partial f}{\partial \mathbf{x}} xf),其中 ( ∇ \nabla ) 是 nabla 符号,表示梯度运算,( x = [ x 1 , x 2 , … , x n ] \mathbf{x} = [x_1, x_2, \ldots, x_n] x=[x1,x2,,xn]) 是输入变量的向量。梯度是一个向量,其每个分量是函数对相应输入变量的偏导数。

∇ f = [ ∂ f ∂ x 1 , ∂ f ∂ x 2 , … , ∂ f ∂ x n ] \nabla f = \left[ \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right] f=[x1f,x2f,,xnf]

梯度的方向是函数在某一点上变化最快的方向,而梯度的模(长度)表示变化率。如果梯度的模较大,意味着函数在该点的变化较为剧烈。

在优化问题中,梯度的使用很常见。梯度下降算法就是一种基于梯度的优化方法,通过迭代更新参数,使得目标函数逐渐趋向最小值。梯度上升算法则是类似的优化方法,用于最大化目标函数。

总的来说,梯度是一个重要的数学概念,特别在优化、机器学习和深度学习等领域有广泛的应用。

整个Actor-Critic Method的框图

在这里插入图片描述

整个算法的流程共有9步,这里是前5步,主要复习以下TD 目标。

r t + γ ⋅ q t + 1 r_t + \gamma \cdot q_{t+1} rt+γqt+1是TD target,时间差分算法里面的(TD目标表示了在当前时刻 t 的奖励 r t r_t rt 加上未来奖励的折扣。这个目标被用于更新值函数,通过比较当前值函数的估计和这个目标,可以调整值函数的参数以逐渐提高估计的准确性。)

在这里插入图片描述

Actor-Critic算法流程:更新价值网络(critic)是梯度下降,更新策略网络(actor)是梯度上升。

在这里插入图片描述

上面第9步中用 q t q_t qt更新,也可以用 δ t \delta_t δt来更新。两种方法都是对的。

Summary

总结一下Actor-Critic方法中Actor和 Critic的作用

在训练中,agent是被策略网络控制的,价值网络打分提供反馈;训练后,agent还是被策略网络控制,但此时价值网络(critic)就没用了。

在这里插入图片描述

怎样训练两个网络:

策略网络是策略梯度来训练。用梯度上升,让状态价值函数V的值增加,这就意味着运动员的平均分提高。

价值网络是用TD算法来训练。TD算法要用到价值网络的预测 q t q_t qt(价值网络对期望回报的估计)以及TD target(也是对期望回报的估计,由于它用到真实的奖励 r t r_t rt,所以它的估计比 q t q_t qt更靠谱, y t y_t yt作为TD target,相当于监督学习中的标签),对损失函数关于价值网络函数的参数 w w w求导得到梯度,然后用梯度下降,让估计 q t q_t qt更接近TD target 也就是 y t y_t yt

在这里插入图片描述

为什么用损失函数对 w w w求导?ChatGPT的回答:

在机器学习中,使用损失函数对模型参数(例如权重 ( w w w))求导的目的是通过梯度下降或其他优化算法来更新模型参数,以最小化或最大化损失函数。这是因为损失函数衡量了模型在训练数据上的性能,我们的目标是使模型在训练数据上表现得越好越好。

考虑一个典型的机器学习问题,其中我们有输入特征 (X) 和对应的目标变量 ( Y Y Y),我们的模型通过一些参数 (w) 进行参数化,表示为 ( Y = f ( X ; w ) Y = f(X; w) Y=f(X;w))。我们的目标是找到最优的参数 (w),使得模型预测的 (Y) 与真实的目标 (Y) 之间的差距最小。

这个差距通常通过损失函数(也叫目标函数)来定义,表示为 ( L ( Y , f ( X ; w ) ) L(Y, f(X; w)) L(Y,f(X;w)))。梯度下降的思想是沿着损失函数下降最快的方向更新参数,直至找到使损失最小化的参数。

为了更新参数,我们需要计算损失函数关于参数 (w) 的梯度(导数)。梯度是一个向量,其中每个分量表示损失函数关于相应参数的偏导数。通过梯度下降,我们按照梯度的反方向更新参数,使得损失函数逐渐减小。

具体来说,对于参数 (w),我们使用链式法则计算损失函数关于 (w) 的梯度,并使用这个梯度来更新 (w)。这个过程反复进行,直到达到停止条件(例如达到最大迭代次数或梯度变化很小)。

总之,使用损失函数对参数 (w) 求导的目的是优化模型,使其在训练数据上的性能达到最优。

策略梯度方法用策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ)更新策略网络参数 θ \theta θ,从而增大目标函数。前面推导出策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 的无偏估计,即下面的随机梯度:

g ( s , a ; θ ) ≜ Q π ( s , a ) ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) . \boldsymbol{g}(s,a;\boldsymbol{\theta}) \triangleq Q_\pi(s,a) \cdot \nabla_{\boldsymbol{\theta}}\ln\pi(a|s;\boldsymbol{\theta}). g(s,a;θ)Qπ(s,a)θlnπ(as;θ).

但是其中的动作价值函数 Q π Q_\mathrm{\pi} Qπ 是未知的,导致无法直接计算 g ( s , a ; θ ) g(s,a;\theta) g(s,a;θ)。上一节的 REINFORCE 用实际观测的回报近似 Q π Q_\mathrm{\pi} Qπ, 本节的 actor-critic 方法用神经网络近似 Q π Q_\mathrm{\pi} Qπ

价值网络

Actor-critic 方法用一个神经网络近似动作价值函数 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a), 这个神经网络叫做“价值网络”, 记为 q ( s , a ; w ) q(s,a;\boldsymbol{w}) q(s,a;w),其中的 w w w 表示神经网络中可训练的参数。价值网络的输入是状态 s s s, 输出是每个动作的价值。动作空间 A A A 中有多少种动作,那么价值网络的输出就是多少维的向量,向量每个元素对应一个动作。举个例子,动作空间是 A = { 左,右,上 } A= \{ 左,右,上\} A={左,右,上},

q ( s ,  左;  w ) = 219 , q ( s ,  右;  w ) = − 73 , q ( s ,  上;  w ) = 580. \begin{aligned}&q(s,\text{ 左; }\boldsymbol{w})&=&219,\\&q(s,\text{ 右; }\boldsymbol{w})&=&-73,\\&q(s,\text{ 上; }\boldsymbol{w})&=&580.\end{aligned} q(s, w)q(s, w)q(s, w)===219,73,580.

神经网络的结构见图 7.2。

在这里插入图片描述

虽然价值网络 q ( s , a ; w ) q(s,a;\boldsymbol{w}) q(s,a;w) 与之前学的 DQN 有相同的结构,但是两者的意义不同,训练算法也不同。

  • 价值网络是对动作价值函数 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a) 的近似。而 DQN 则是对最优动作价值函数 Q ⋆ ( s , a ) Q_\star(s,a) Q(s,a) 的近似。
  • 对价值网络的训练使用的是 SARSA 算法,它属于同策略,不能用经验回放。对 DQN的训练使用的是 Q 学习算法,它属于异策略,可以用经验回放。

算法推导

Actor-critic 翻译成“演员一评委”方法。策略网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ) 相当于演员,它基于状态 s s s 做出动作 a a a。价值网络 q ( s , a ; w ) q(s,a;\boldsymbol{w}) q(s,a;w) 相当于评委,它给演员的表现打分,评价在状态 s s s 的情况下做出动作 a a a的好坏程度。策略网络(演员)和价值网络(评委)的关系如图7.3所示。

在这里插入图片描述

读者可能会对图 7.3 感到不解:为什么不直接把奖励 R R R 反馈给策略网络 (演员),而要用价值网络 (评委) 这样一个中介呢?原因是这样的:策略学习的目标函数 J ( θ ) J(\theta) J(θ) 是回报 U U U 的期望,而不是奖励 R R R 的期望;注意回报 U U U 和奖励 R R R 的区别。虽然能观测到当前的奖励 R R R,但是它对策略网络是毫无意义的;训练策略网络(演员)需要的是回报 U U U,而不是奖励 R R R。价值网络 (评委) 能够估算出回报 U U U 的期望,因此能帮助训练策略网络 (演员)。

训练策略网络 (演员)

策略网络 (演员) 想要改进自己的演技,但是演员自己不知道什么样的表演才算更好,所以需要价值网络(评委) 的帮助。在演员做出动作 a a a 之后, 评委会打一个分数 q ^ ≜ q ( s , a ; w ) \widehat{q}\triangleq q(s,a;\boldsymbol{w}) q q(s,a;w),并把分数反馈给演员,帮助演员做出改进。演员利用当前状态 s s s, 自己的动作 a a a, 以及评委的打分 q ^ \widehat{q} q , 计算近似策略梯度,然后更新自己的参数 θ \theta θ(相当于改变自己的技术)。通过这种方式,演员的表现越来越受评委的好评,于是演员的获得的评分 q ^ \widehat{q} q 越来越高。

训练策略网络的基本想法是用策略梯度 ∇ θ J ( θ ) \nabla_{\theta}J(\theta) θJ(θ) 的近似来更新参数 θ \theta θ。之前我们推导过策略梯度的无偏估计:

g ( s , a ; θ )   ≜   Q π ( s , a )   ⋅   ∇ θ ln ⁡ π ( a   ∣   s ;   θ ) . \boldsymbol{g}(s,a;\boldsymbol{\theta})\:\triangleq\:Q_{\pi}\big(s,a\big)\:\cdot\:\nabla_{\boldsymbol{\theta}}\ln\pi\big(a\:\big|\:s;\:\boldsymbol{\theta}\big). g(s,a;θ)Qπ(s,a)θlnπ(a s;θ).

价值网络 q ( s , a ; w ) q(s,a;\boldsymbol{w}) q(s,a;w) 是对动作价值函数 Q π ( s , a ) Q_{\pi}(s,a) Qπ(s,a) 的近似,所以把上面公式中的 Q π Q_{\pi} Qπ 替换成价值网络,得到近似策略梯度:

g ^ ( s , a ; θ ) ≜ q ( s , a ; w ) ⏟ 评委的打分 ⋅ ∇ θ ln ⁡ π ( a ∣ s ; θ ) . ( 7.11 ) \begin{array}{rcl}\widehat{\boldsymbol{g}}(s,a;\boldsymbol{\theta})&\triangleq&\underbrace{q(s,a;\boldsymbol{w})}_\text{评委的打分}\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a\mid s;\boldsymbol{\theta}).\end{array}\quad{(7.11)} g (s,a;θ)评委的打分 q(s,a;w)θlnπ(as;θ).(7.11)

最后做梯度上升更新策略网络的参数:

θ ← θ + β ⋅ g ^ ( s , a ; θ ) . ( 7.12 ) \theta\leftarrow\theta+\beta\cdot\widehat{\boldsymbol{g}}(s,a;\boldsymbol{\theta}).\quad{(7.12)} θθ+βg (s,a;θ).(7.12)

注: 用上述方式更新参数之后,会让评委打出的分数越来越高,原因是这样的。状态价值函数 V π ( s ) V_{\pi}(s) Vπ(s) 可以近似成为:

v ( s ; θ )   =   E A ∼ π ( ∣ s ; θ ) [ q ( s , A ; w ) ] . v(s;\boldsymbol{\theta})\:=\:\mathbb{E}_{A\sim\pi(\boldsymbol{|}s;\boldsymbol{\theta})}\Big[q(s,A;\boldsymbol{w})\Big]. v(s;θ)=EAπ(s;θ)[q(s,A;w)].

因此可以将 v ( s ; θ ) v(s;\theta) v(s;θ) 看做评委打分的均值。不难证明,公式 (7.11) 中定义的近似策略梯度 g ^ ( s , a ; θ ) \widehat{\boldsymbol{g}}(s,a;\boldsymbol{\theta}) g (s,a;θ) 的期望等于 v ( s ; θ ) v(s;\boldsymbol{\theta}) v(s;θ) 关于 θ \theta θ 的梯度:

∇ θ v ( s ; θ )   =   E A ∼ π ( ⋅ ∣ s ; θ ) [ g ^ ( s , A ; θ ) ] . \nabla_{\boldsymbol{\theta}v}(s;\boldsymbol{\theta})\:=\:\mathbb{E}_{A\sim\pi(\cdot|s;\boldsymbol{\theta})}\Big[\widehat{\boldsymbol{g}}(s,A;\boldsymbol{\theta})\Big]. θv(s;θ)=EAπ(s;θ)[g (s,A;θ)].

因此,用公式 7.12 中的梯度上升更新 θ \theta θ,会让 v ( s ; θ ) v(s;\theta) v(s;θ) 变大,也就是让评委打分的均值更高。

训练价值网络(评委)

通过以上分析,我们不难发现上述训练策略网络(演员)的方法不是真正让演员表现更好,只是让演员更迎合评委的喜好而已。因此,评委的水平也很重要,只有当评委的打分 q ^ \widehat{q} q 真正反映出动作价值 Q π Q_\pi Qπ,演员的水平才能真正提高。初始的时候,价值网络的参数 w w w 是随机的,也就是说评委的打分是瞎猜。可以用 SARSA 算法更新 w w w,提高评委的水平。每次从环境中观测到一个奖励 r r r,把 r r r 看做是真相,用 r r r 来校准评委的打分。

第 5.1 节已经推导过 SARSA 算法,现在我们再回顾一下。在 t t t 时刻,价值网络输出

q ^ t   =   q ( s t , a t ;   w ) , \widehat q_{t}\:=\:q(s_{t},a_{t};\:\boldsymbol{w}), q t=q(st,at;w),

它是对动作价值函数 Q π ( s t , a t ) Q_\pi(s_t,a_t) Qπ(st,at) 的估计。在 t + 1 t+1 t+1 时刻,实际观测到 r t , s t + 1 , a t + 1 r_t,s_{t+1},a_{t+1} rt,st+1,at+1, 于是可以计算 TD 目标

y t ^   ≜   r t + γ ⋅ q ( s t + 1 , a t + 1 ;   w ) , \widehat{y_{t}}\:\triangleq\:r_{t}+\gamma\cdot q\big(s_{t+1},a_{t+1};\:\boldsymbol{w}\big), yt rt+γq(st+1,at+1;w),

它也是对动作价值函数 Q π ( s t , a t ) Q_\pi(s_t,a_t) Qπ(st,at) 的估计。由于 y ^ t \widehat{y}_t y t 部分基于实际观测到的奖励 r t r_t rt,我们认为 y ^ t \widehat{y}_t y t q ( s t , a t ; w ) q(s_t,a_t;\boldsymbol{w}) q(st,at;w) 更接近事实真相。所以把 y ^ t \widehat{y}_t y t 固定住,鼓励 q ( s t , a t ; w ) q(s_t,a_t;\boldsymbol{w}) q(st,at;w) 去接近 y ^ t \widehat{y}_t y t。SARSA 算法具体这样更新价值网络参数 w w w。定义损失函数:
L ( w ) ≜ 1 2 [ q ( s t , a t ; w ) − y ^ t ] 2 . L(\boldsymbol{w})\triangleq\frac{1}{2}\Big[q\big(s_t,a_t;\boldsymbol{w}\big)-\widehat{y}_t\Big]^2. L(w)21[q(st,at;w)y t]2.

q ^ t ≜ q ( s t , a t ; w ) \widehat{q}_t\triangleq q(s_t,a_t;\boldsymbol{w}) q tq(st,at;w)。损失函数的梯度是:

∇ w   L ( w )   =   ( q ^ t − y ^ t ) ⏟ TD 误差  δ t   ⋅ ∇ w   q ( s t , a t ; w ) . \nabla_{\boldsymbol{w}}\:L\big(\boldsymbol{w}\big)\:=\:\underbrace{\big(\widehat{q}_{t}-\widehat{y}_{t}\big)}_{\text{TD 误差 }\delta_{t}}\:\cdot\nabla_{\boldsymbol{w}}\:q\big(s_{t},a_{t};\boldsymbol{w}\big). wL(w)=TD 误差 δt (q ty t)wq(st,at;w).

做一轮梯度下降更新 w : w: w:

w   ←   w   −   α ⋅ ∇ w L ( w ) . w\:\leftarrow\:w\:-\:\alpha\cdot\nabla_{\boldsymbol{w}}L(\boldsymbol{w}). wwαwL(w).
这样更新 w w w 可以让 q ( s t , a t ; w ) q(s_t,a_t;\boldsymbol{w}) q(st,at;w) 更接近 y ^ t \widehat{y}_t y t。可以这样理解 SARSA: 用观测到的奖励 r t r_t rt 来“校准”评委的打分 q ( s t , a t ; w ) q(s_t,a_t;\boldsymbol{w}) q(st,at;w)

训练流程

下面概括 actor-critic 训练流程。设当前策略网络参数是 θ n o w \theta_\mathrm{now} θnow,价值网络参数是 w n o w w_\mathrm{now} wnow
执行下面的步骤,将参数更新成 θ n e w \theta_\mathrm{new} θnew w n e w w_\mathrm{new} wnew:

  1. 观测到当前状态 s t s_t st,根据策略网络做决策 : a t ∼ π ( ⋅ ∣ s t ; θ n o w ) :a_t\sim\pi(\cdot|s_t;\theta_\mathrm{now}) :atπ(st;θnow)​, 并让智能体执行动作 a t a_t at
  2. 从环境中观测到奖励 r t r_t rt 和新的状态 s t + 1 s_{t+1} st+1
  3. 根据策略网络做决策 : a ~ t + 1 ∼ π ( ⋅ ∣ s t + 1 ; θ n o w ) :\tilde{a}_{t+1}\sim\pi(\cdot|s_{t+1};\theta_{\mathrm{now}}) :a~t+1π(st+1;θnow),但不让智能体执行动作 a ~ t + 1 \tilde{a}_{t+1} a~t+1
  4. 让价值网络打分:

q ^ t   =   q ( s t , a t ;   w n o w ) 和 q ^ t + 1   =   q ( s t + 1 , a ~ t + 1 ;   w n o w ) \widehat q_{t}\:=\:q\big(s_{t},a_{t};\:\boldsymbol{w_{\mathrm{now}}}\big)\quad\text{和}\quad\widehat q_{t+1}\:=\:q\big(s_{t+1},\tilde{a}_{t+1};\:\boldsymbol{w_{\mathrm{now}}}\big) q t=q(st,at;wnow)q t+1=q(st+1,a~t+1;wnow)

  1. 计算 TD 目标和 TD 误差:

y ^ t   =   r t + γ ⋅ q ^ t + 1 和 δ t   =   q ^ t − y ^ t . \widehat y_{t}\:=\:r_{t}+\gamma\cdot\widehat q_{t+1}\quad\text{和}\quad\delta_{t}\:=\:\widehat q_{t}-\widehat y_{t}. y t=rt+γq t+1δt=q ty t.

  1. 更新价值网络:

w n e w   ←   w n o w   −   α ⋅ δ t ⋅ ∇ w q ( s t , a t ;   w n o w ) . w_{\mathrm{new}}\:\leftarrow\:w_{\mathrm{now}}\:-\:\alpha\cdot\delta_{t}\cdot\nabla_{\boldsymbol{w}}q\big(s_{t},a_{t};\:\boldsymbol{w_{\mathrm{now}}}\big). wnewwnowαδtwq(st,at;wnow).

  1. 更新策略网络:

θ n e w   ←   θ n o w   +   β ⋅ q ^ t ⋅ ∇ θ ln ⁡ π ( a t   ∣   s t ;   θ n o w ) . \theta_{\mathrm{new}}\:\leftarrow\:\theta_{\mathrm{now}}\:+\:\beta\cdot\widehat{q}_{t}\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a_{t}\:|\:s_{t};\:\boldsymbol{\theta}_{\mathrm{now}}). θnewθnow+βq tθlnπ(atst;θnow).

用目标网络改进训练

第 6.2 节讨论了 Q 学习中的自举及其危害,以及用目标网络 (target network) 缓解自举造成的偏差。SARSA 算法中也存在自举一一即用价值网络自己的估值 q ^ t + 1 \widehat{q}_{t+1} q t+1 去更新价值网络自己;我们同样可以用目标网络计算 TD 目标,从而缓解偏差。把目标网络记作 q ( s , a ; w − ) q(s,a;\boldsymbol{w}^-) q(s,a;w),它的结构与价值网络相同,但是参数不同。使用目标网络计算 TD 目标,那么 actor-critic 的训练就变成了:

  1. 观测到当前状态 s t s_t st,根据策略网络做决策 : a t ∼ π ( ⋅ ∣ s t ; θ n o w ) :a_t\sim\pi(\cdot|s_t;\theta_\mathrm{now}) :atπ(st;θnow), 并让智能体执行动作 a t a_t at

  2. 从环境中观测到奖励 r t r_t rt 和新的状态 s t + 1 s_{t+1} st+1

  3. 根据策略网络做决策 : a ~ t + 1 ∼ π ( ⋅ ∣ s t + 1 ; θ n o w ) :\tilde{a}_{t+1}\sim\pi(\cdot|s_{t+1};\theta_{\mathrm{now}}) :a~t+1π(st+1;θnow),但是不让智能体执行动作 a ~ t + 1 \tilde{a}_{t+1} a~t+1

  4. 让价值网络给 ( s t , a t ) (s_t,a_t) (st,at) 打分:

q ^ t   =   q ( s t , a t ;   w n o w ) . \widehat q_{t}\:=\:q(s_{t},a_{t};\:\boldsymbol{w_{\mathrm{now}}}). q t=q(st,at;wnow).

  1. 让目标网络给 ( s t + 1 , a ~ t + 1 ) (s_{t+1},\tilde{a}_{t+1}) (st+1,a~t+1) 打分:

q ^ t + 1 −   =   q ( s t + 1 , a ~ t + 1 ;   w n o w ~ ) . \widehat q_{t+1}^{-}\:=\:q\big(s_{t+1},\tilde{a}_{t+1};\:\tilde{w_{\mathrm{now}}}\big). q t+1=q(st+1,a~t+1;wnow~).

  1. 计算 TD 目标和 TD 误差:

y ^ t −   =   r t + γ ⋅ q ^ t + 1 − 和 δ t   =   q ^ t − y ^ t − . \widehat y_{t}^{-}\:=\:r_{t}+\gamma\cdot\widehat q_{t+1}^{-}\quad\text{和}\quad\delta_{t}\:=\:\widehat q_{t}-\widehat y_{t}^{-}. y t=rt+γq t+1δt=q ty t.

  1. 更新价值网络:

w n e w   ←   w n o w −   α ⋅ δ t ⋅ ∇ w q ( s t , a t ;   w n o w ) . w_{\mathrm{new}}\:\leftarrow\:w_{\mathrm{now}}-\:\alpha\cdot\delta_{t}\cdot\nabla_{\boldsymbol{w}}q\big(s_{t},a_{t};\:\boldsymbol{w}_{\mathrm{now}}\big). wnewwnowαδtwq(st,at;wnow).

  1. 更新策略网络:

θ n e w   ←   θ n o w   +   β ⋅ q ^ t ⋅ ∇ θ ln ⁡ π ( a t   ∣   s t ;   θ n o w ) . \theta_{\mathrm{new}}\:\leftarrow\:\theta_{\mathrm{now}}\:+\:\beta\cdot\widehat{q}_{t}\cdot\nabla_{\boldsymbol{\theta}}\ln\pi(a_{t}\:|\:s_{t};\:\boldsymbol{\theta}_{\mathrm{now}}). θnewθnow+βq tθlnπ(atst;θnow).

  1. τ ∈ ( 0 , 1 ) \tau\in(0,1) τ(0,1) 是需要手动调整的超参数。做加权平均更新目标网络的参数:

w n e w −   ←   τ ⋅ w n e w   +   ( 1 − τ ) ⋅ w n o w − . w_{\mathrm{new}}^{-}\:\leftarrow\:\tau\cdot w_{\mathrm{new}}\:+\:\left(1-\tau\right)\cdot\boldsymbol{w_{\mathrm{now}}^{-}}. wnewτwnew+(1τ)wnow.

本章总结

  • 可以用神经网络 π ( a ∣ s ; θ ) \pi(a|s;\theta) π(as;θ) 近似策略函数。策略学习的目标函数是 J ( θ ) = E S [ V π ( S ) ] J(\theta)=\mathbb{E}_S[V_\pi(S)] J(θ)=ES[Vπ(S)], 它的值越大,意味着策略越好。

  • 策略梯度指的是 J ( θ ) J(\theta) J(θ) 关于策略参数 θ \theta θ 的梯度。策略梯度定理将策略梯度表示成

g ( s , a ; θ )   ≜   Q π ( s , a )   ⋅   ∇ θ ln ⁡ π ( a   ∣   s ;   θ ) \boldsymbol{g}(s,a;\boldsymbol{\theta})\:\triangleq\:Q_{\pi}(s,a)\:\cdot\:\nabla_{\boldsymbol{\theta}}\ln\pi(a\:|\:s;\:\boldsymbol{\theta}) g(s,a;θ)Qπ(s,a)θlnπ(as;θ)

的期望。

  • REINFORCE 算法用实际观测的回报 u u u 近似 Q π ( s , a ) Q_\pi(s,a) Qπ(s,a) , 从而把 g ( s , a ; θ ) g(s,a;\theta) g(s,a;θ) 近似成:

g ~ ( s , a ; θ ) ≜   u   ⋅   ∇ θ ln ⁡ π ( a   ∣   s ;   θ ) . \tilde{\boldsymbol{g}}(s,a;\boldsymbol{\theta})\triangleq\:u\:\cdot\:\nabla_{\boldsymbol{\theta}}\ln\pi(a\:|\:s;\:\boldsymbol{\theta}). g~(s,a;θ)uθlnπ(as;θ).

REINFORCE 算法做梯度上升更新策略网络: θ ← θ + β ⋅ g ~ ( s , a ; θ ) \theta\leftarrow\theta+\beta\cdot\tilde{\boldsymbol{g}}(s,a;\boldsymbol{\theta}) θθ+βg~(s,a;θ)

  • Actor-critic 用价值网络 q ( s , a ; w ) q(s,a;\boldsymbol{w}) q(s,a;w) 近似 Q π ( s , a ) Q_{\pi}(s,a) Qπ(s,a), 从而把 g ( s , a ; θ ) g(s,a;\boldsymbol{\theta}) g(s,a;θ) 近似成:

g ^ ( s , a ; θ )   ≜   q ( s , a ; w )   ⋅   ∇ θ ln ⁡ π ( a   ∣   s ;   θ ) \widehat{\boldsymbol{g}}(s,a;\boldsymbol{\theta})\:\triangleq\:q(s,a;\boldsymbol{w})\:\cdot\:\nabla_{\boldsymbol{\theta}}\ln\pi(a\:|\:s;\:\boldsymbol{\theta}) g (s,a;θ)q(s,a;w)θlnπ(as;θ)

Actor-critic 用 SARSA 算法更新价值网络 q q q, 用梯度上升更新策略网络 : θ ← θ + β ⋅ g ^ ( s , a ; θ ) :\theta\gets\theta+\beta \cdot \widehat{\boldsymbol{g}}(s,a;\boldsymbol{\theta}) :θθ+βg (s,a;θ)

后记

截至2024年1月27日17点25分,学习完强化学习中的Actor-Critic算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1415057.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探索IOC和DI:解密Spring框架中的依赖注入魔法

IOC与DI的详细解析 IOC详解1 bean的声明2 组件扫描 DI详解 IOC详解 1 bean的声明 IOC控制反转,就是将对象的控制权交给Spring的IOC容器,由IOC容器创建及管理对象。IOC容器创建的对象称为bean对象。 要把某个对象交给IOC容器管理,需要在类上…

基于springboot+vue的在线教育系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…

如何看待程序员抄代码还拿着高薪这一说法?

程序员的工资构成:会复制粘贴值1块,知道去哪复制值5K,知道粘贴在哪值10K,粘贴完了能跑起来值15 有人说:能带领一伙人复制粘贴值20k。 有人说:能写一个自动复制粘贴的系统值30k。 有人纳闷问到&#xff1a…

兄弟DCP-7057黑白激光多功能一体机加粉后清零方法

硒鼓加粉机器上清零,方法如下: 打开安装硒鼓的前盖。按“清除”键,显示“更换硒鼓”。不用管提示,接着按“启用Start”,再按“”,屏幕上显示“01”。继续按“”,直到屏幕上显示“11”。按“OK”…

【C/C++】C/C++编程——变量和常量

文章目录 变量变量的声明变量命名规则变量的类型 常量常量的定义与初始化字面量常量整型常量浮点型常量字符常量常量表达式(constexpr) 大家好,我是 shopeeai,也可以叫我虾皮,中科大菜鸟研究生。今天我们来一起来学习C…

软考之项目管理

一、考点分布 盈亏平衡分析(※)进度管理(※※※)软件质量管理(※※)软件配置管理(※※) 二、盈亏平衡分析 正常情况下,销售额固定成本可变成本税费利润 盈亏平衡下&#…

微信朋友圈新功能:多账号同步发圈,定时发圈!

​你是否会有这种烦恼 想要发布一条朋友圈,但是却因为忙着搞其他事情无暇顾及,甚至忘记了需要发布朋友圈这个事情? 有多个微信号想要同时为它们发布同一条内容的朋友圈,但又不想要分别登录进去进行操作? 你是否厌倦了每…

算法刷题:p1387 最大正方形

解题思路: 利用动态规划的思想设置一个标记数组flag[][],flag[i][j]用来记录矩阵op[][]中以op[i][j]为右下角的子矩阵中最大的正方形边长,那么动态方程就是 flag[i][j]min(flag[i-1][j],min(flag[i-1][j-1],flag[i][j-1]))1;左侧和上方以及左…

Java基础—面向对象OOP—17类与对象(创建、构造器、创建对象时简单内存分析)

把握重点,重点已标注,这篇笔记分了4个章节,重点看二、三、四 一、整体思维--重点把握面向对象的本质和特点 1、面向对象编程OOP: Object-Oriented programming 2、面向过程与面向对象 面向过程:线性思维 面向对象…

k8s从初识到上天系列第二篇:kubernetes的组件和架构

😉😉 欢迎加入我们的学习交流群呀! ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring、SpringSecurity、Docker、Grpc、各种MQ、Rpc、SpringCloud等等很多应用和源码…

【word visio绘图】关闭visio两线交叉的跳线(跨线)

【visio绘图】关闭visio两线交叉的跳线(跨线) 1 如何在Visio绘图中关闭visio两线交叉的跳线(跨线)第一步:打开Visio并创建您的图形第二步:绘制您的连接线第三步:关闭跳线第四步:手动…

用友U8接口-获取token数据字段(2)

概括 本文的操作需要正确部署U8HttpApi ,绑定IIS端口获取erp账套信息获取token访问令牌传入JSON的参数如何设置 账套数据库 方式一 查看数据库,UFDATA开头的 方式二 调用接口 此接口返回所有erp账套数据库信息 Token 访问有鉴权的接口&#x…

Python 语法及入门 (超全超详细) 专为Python零基础 一篇博客让你完全掌握Python语法

前言: 本篇博客超级详细,请尽量使用电脑端结合目录阅读 阅读时请打开右侧 “只看目录” 方便阅读 一、什么是Python 1.1 Python的诞生 1989年,为了打发圣诞节假期,Gudio van Rossum吉多 范罗苏姆(龟叔)决…

Javaweb之SpringBootWeb案例本地存储的详细解析

2.2 本地存储 前面我们已分析了文件上传功能前端和后端的基础代码实现,文件上传时在服务端会产生一个临时文件,请求响应完成之后,这个临时文件被自动删除,并没有进行保存。下面呢,我们就需要完成将上传的文件保存在服…

BAT学习笔记:详解环境变量及其所有创建方法

文章目录 一、初识环境变量二、什么是环境变量三、为什么需要环境变量四、环境变量的分类五、环境变量的设置 一、初识环境变量 1.windows 的搜索框中输入 查看高级系统设置。点击打开系统属性窗口。 2. 在系统属性窗口中,点击右下方的“环境变量”打开环境变量设…

计算机找不到ucrtbased.dll无法运行程序,分享5种有效的解决方法

当计算机系统在运行过程中无法找到ucrtbased.dll这个特定的动态链接库文件时,可能会引发一系列的问题和故障现象。ucrtbased.dll是Windows操作系统中一个至关重要的组件,它包含了C运行时库的核心函数,对于许多应用程序特别是基于Microsoft Vi…

log4cplus开源库使用

log4cplus 的github地址:https://github.com/log4cplus/log4cplus 下载链接:log4cplus - Browse /log4cplus-stable/2.0.7 at SourceForge.net 官方文档:log4cplus / Wiki / Home 1.log4cplus配置 (1)打开解决方案…

滴水逆向三期笔记与作业——02C语言——10 Switch语句反汇编

滴水逆向三期笔记与作业——02C语言——10 Switch语句反汇编 一、Switch语句1、switch语句 是if语句的简写2、break加与不加有什么特点?default语句可以省略吗?3、游戏中的switch语句(示例)4、添加case后面的值,一个一个增加&…

故障树分析蒙特卡洛仿真程序(附MATLAB完整代码)

故障树是一种特殊的倒立树状逻辑因果关系图,它用事件符号、逻辑门符号和转移符号描述系统中各种事件之间的因果关系,通过对引起系统故障的各种因素进行逻辑因果分析,确定导致故障发生的各种可能的原因,并通过定性和定量分析找出系…

如何限制 IP 多次重新访问

随着互联网的快速发展,网络安全问题日益突出。恶意 IP 多次重新访问是一种常见的手段,可能导致服务器负载过高、资源浪费、网站响应速度下降等问题。为了提高网络安全性,我们需要采取有效的措施来限制恶意 IP 的多次重新访问。下面简单的介绍…