scipy通过快速傅里叶变换实现滤波

news2025/1/11 0:40:51

文章目录

    • fft模块简介
    • fft函数示例
    • 滤波

fft模块简介

scipy官网宣称,fftpack模块将不再更新,或许不久之后将被废弃,也就是说fft将是唯一的傅里叶变换模块。

Fourier变换极其逆变换在数学上的定义如下

F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t f ( t ) = π 2 ∫ − ∞ ∞ F ( ω ) e i ω t d ω F(\omega)=\int^\infty_{-\infty}f(t)e^{-i\omega t}\text dt\\ f(t)=\frac{\pi}{2}\int^\infty_{-\infty}F(\omega)e^{i\omega t}\text d\omega F(ω)=f(t)etdtf(t)=2πF(ω)etdω

下表整理出一部分与Fourier变换相关的函数,其中FFT为快速Fourier变换(Fast Fourier Transform);DCT为离散余弦变换(Discrete Cosine Transform);DST为离散正弦变换(discrete sine transform),另外,函数的前缀和后缀有如下含义

  • i表示逆变换;
  • 2, n分别表示2维和n维
正变换逆变换
通用fft, fft2, fftnifft, ifft2, ifftn
实数域rfft, rfft2, rfftnirfft, irfft2, irfftn
厄米对称hfft, hfft2, hfftnihfft, ihfft2, ihfftn
离散余弦变换dct, dctnidct, idctn
离散正弦变换dst, dstnidst, idstn
汉克尔变换fhtifht
移动零频fftshiftifftshift
DFT采样频率fftfreqifftfreq

fft函数示例

在数值计算中,一切输入输出均为离散值,所以实际上用到的是离散Fourier变换,即DFT,其功能是将离散的采样变换为一个离散的频谱分布。

下面将手动创建一组采样点,并添加一点噪声,然后通过FFT获取其频域信息。

import numpy as np
from scipy import fft

PI = np.pi*2
fs = 60     #采样频率
T = 100     #采样周期数
N = fs*T    #采样点
t = np.linspace(0, T, N)
noise = 2 * np.random.randn(*t.shape)
s = 2 * np.sin(PI * t) + 3 * np.sin(22 * PI * t) + noise
F = fft.fft(s)
f = fft.fftfreq(N, 1.0/fs)

其中,t为时间序列,s为模拟的采样点,F是Fourier变换之后的结果。但由于fft默认是在复数域上的,故而可以查看其实部、虚部、模和辐角的值。

下面对采样点以及Fourier变换的结果进行绘制

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2,2,1)
ax.plot(t, s)
ax.set_title("t vs s")
f_abs = np.abs(F)
ax = fig.add_subplot(2,2,2)
ax.plot(f, f_abs)
ax.set_title("fs vs |F|")

xlims = [[0,2], [21,23]]
for i, xlim in enumerate(xlims):
    ax = fig.add_subplot(2,2,3+i)
    ax.stem(f, f_abs)
    ax.set_title("fs vs |F|")
    ax.set_xlim(xlim)

plt.show()

结果为

在这里插入图片描述

f = 1 f=1 f=1 f = 22 f=22 f=22处被筛选了出来。

滤波

有了这个,就可以在频域上对数据进行滤波,其思路是,对f_abs中的值进行阈值分割,例如,只筛选出低频部分,然后看一下滤波效果

fig = plt.figure(1)
f_filt = F * (np.abs(f) < 2)
s_filt = fft.ifft(f_filt)
ax = fig.add_subplot()
ax.plot(t, s, lw=0.2)
ax.plot(t, s_filt.real, lw=2)
ax.set_title("threshold=2")
ax.set_xlim([0,10])
plt.show()

效果如下

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1402009.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python图像处理【19】基于霍夫变换的目标检测

基于霍夫变换的目标检测 0. 前言1. 使用圆形霍夫变换统计图像中圆形对象2. 使用渐进概率霍夫变换检测直线2.1 渐进霍夫变换原理2.2 直线检测 3. 使用广义霍夫变换检测任意形状的对象3.1 广义霍夫变换原理3.2 检测自定义形状 小结系列链接 0. 前言 霍夫变换 (Hough Transform,…

2024最新:optee系统开发精讲 - 课程介绍

&#xff08;本课程中如有涉及代码或硬件架构&#xff0c;则对应的版本号&#xff1a;TF-A 2.80&#xff0c;optee 3.20, Linux Kernel 6.3&#xff0c;armv8.79.0的aarch64&#xff09; &#xff08;注意&#xff1a; 该课程没有PPT&#xff0c;该课程是对照代码讲解的&#x…

回归预测 | Matlab基于ABC-SVR人工蜂群算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于ABC-SVR人工蜂群算法优化支持向量机的数据多输入单输出回归预测 目录 回归预测 | Matlab基于ABC-SVR人工蜂群算法优化支持向量机的数据多输入单输出回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab基于ABC-SVR人工蜂群算法优化支持…

矩阵重叠问题判断

创作背景 看到一道题目有感而发想写一篇题解&#xff0c;涉及的是一种逆向思维 桌面窗体重叠 - 洛谷https://www.luogu.com.cn/problem/U399827题目来源于《信息学奥赛课课通》 大致就是给一个长方形的左上顶点坐标&#xff08;x1,y1&#xff09;和右下顶点坐标&#xff08;x…

面试题:SpringBoot项目怎么设计业务操作日志功能?

文章目录 前言需求描述与分析系统日志操作日志 设计思路Spring AOPFilter和HandlerInterceptorSpringAOP、过滤器、拦截器对比 实现方案环境配置依赖配置表结构设计代码实现 测试调试方法验证结果 总结 前言 很久以前都想写这篇文章&#xff0c;一直没有空&#xff0c;但直到现…

【QT+QGIS跨平台编译】之一:【sqlite+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、sqlite3介绍二、文件下载三、文件分析四、pro文件五、编译实践 一、sqlite3介绍 SQLite是一款轻型的数据库&#xff0c;是遵守ACID的关系型数据库管理系统&#xff0c;它包含在一个相对小的C库中。它是D.RichardHipp建立的公有领域项目。它的设计目标是嵌入式的&…

MSVS C# Matlab的混合编程系列2 - 构建一个复杂(含多个M文件)的动态库:

前言: 本节我们尝试将一个有很多函数和文件的Matlab算法文件集成到C#的项目里面。 本文缩语: MT = Matlab 问题提出: 1 我们有一个比较复杂的Matlab文件: 这个MATLAB的算法,写了很多的算法函数在其他的M文件里面,这样,前面博客的方法就不够用了。会报错: 解决办法如下…

[学习笔记]刘知远团队大模型技术与交叉应用L3-Transformer_and_PLMs

RNN存在信息瓶颈的问题。 注意力机制的核心就是在decoder的每一步&#xff0c;都把encoder的所有向量提供给decoder模型。 具体的例子 先获得encoder隐向量的一个注意力分数。 注意力机制的各种变体 一&#xff1a;直接点积 二&#xff1a;中间乘以一个矩阵 三&#xff1a;…

Opncv模板匹配 单模板匹配 多模板匹配

目录 问题引入 单模板匹配 ①模板匹配函数: ②查找最值和极值的坐标和值: 整体流程原理介绍 实例代码介绍: 多模板匹配 ①定义阈值 ②zip函数 整体流程原理介绍 实例代码: 问题引入 下面有请我们的陶大郎登场 这张图片是我们的陶大郎,我们接下来将利用陶大郎来介绍…

恒悦sunsite博客2023年总结及2024年展望

一、2023年总结 一年如一日的坚持做好一件事并不是容易的事情&#xff0c;但是只要我们坚持下去&#xff0c;乘风破浪会有时&#xff0c;直挂云帆济沧海。   2023年是意义非凡的一年&#xff0c;年初的时候自己定下了两个目标&#xff1a;第一个是完成博客专家认证&#xff1…

HarmonyOS鸿蒙应用开发 (一、环境搭建及第一个Hello World)

万事开头难。难在迈出第一步。心无旁骛&#xff0c;万事可破。没有人一开始就能想清楚&#xff0c;只有做起来&#xff0c;目标才会越来越清晰。--马克.扎克伯格 前言 2024年1月16日&#xff0c;华为目前开启已HarmonyOS NEXT开发者预览版Beta招募&#xff0c;报名周期为1月15…

做好销售人员激励的3个要诀

企业合并是企业发展的重要战略手段之一。许多成长中的企业在经过一段时间的积累后&#xff0c;为了获得快速成长&#xff0c;实现规模效应&#xff0c;通常会采用合并的手段实现目标&#xff0c;同时企业会制定新型政策规范企业管理。但是在制定政策之前&#xff0c;企业通常会…

到店商详架构变迁

一、项目背景 到店商详是平台为京东到店业务提供的专属商详页面&#xff0c;将传统电商购物路径打造成以LBS门店属性的本地生活服务交易链路。 二、架构变迁 1、 主站商详扩展点 **优点&#xff1a;**到店侧仅关注业务&#xff0c;无需过度关注服务部署、性能优化等。 **缺…

Java实现大学计算机课程管理平台 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 实验课程档案模块2.2 实验资源模块2.3 学生实验模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 实验课程档案表3.2.2 实验资源表3.2.3 学生实验表 四、系统展示五、核心代码5.1 一键生成实验5.2 提交实验5.3 批阅实…

数字IC笔试题——门控时钟与控制信号电平、与门门控、或门门控、上升沿门控、下降沿门控

门控时钟问题。 &#xff08;华为-2019-芯片-数字-34&#xff09; 从后端设计考虑&#xff0c;在必须使用门控时钟的时候&#xff0c;需要遵循一个原则&#xff1a;门控时钟的输出只能跟着时钟信号进行跳变&#xff0c;而不能跟着控制信号进行跳变&#xff0c;也就是说对于用N…

【订单领域】如果订单要分库分表,如何确认最佳库表数量?

&#x1f389;欢迎来系统设计专栏&#xff1a;如果订单要分库分表&#xff0c;如何确认最佳库表数量? &#x1f4dc;其他专栏&#xff1a;java面试 数据结构 源码解读 故障分析 &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是小徐&#x1f947;☁️博客首页&#x…

python-分享篇-draw heart

文章目录 heart代码效果 draw-heart代码效果 heart-shape-chart代码效果 heart-stitching-by-string代码效果 love-you代码效果 heart 代码 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3Ddef heart_3d(x,y,z):return (x**2(9…

用友NC portal/file 任意文件读取漏洞复现

0x01 产品简介 用友NC是一款企业级ERP软件。作为一种信息化管理工具,用友NC提供了一系列业务管理模块,包括财务会计、采购管理、销售管理、物料管理、生产计划和人力资源管理等,帮助企业实现数字化转型和高效管理。 0x02 漏洞概述 用友NC 系统 /portal/file等接口存在任意…

文心一言4.0参数配置

链接&#xff1a;百度智能云千帆大模型平台 文心一言API使用教程&#xff08;python版&#xff09;_python_蓝桉155-百度飞桨星河社区 检查代码的逻辑错误&#xff1a;# 定义一个后台进程类&#xff0c;继承自subprocess.Popen class BackgroundProcess(subprocess.Popen): d…