代码随想录算法训练营第31天 | 理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和

news2025/2/25 23:09:39

目录

理论基础 

455.分发饼干 

💡解题思路

💻实现代码

376. 摆动序列 

💡解题思路

# 情况一:上下坡中有平坡

# 情况二:数组首尾两端

情况三:单调坡度有平坡

💻实现代码

53. 最大子序和

💡解题思路

贪心解法

💻实现代码


理论基础 

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

这么说有点抽象,来举一个例子:

例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?

指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

455.分发饼干 

题目链接:455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值  g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例  1:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1 解释:你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。所以你应该输出 1。

示例  2:

  • 输入: g = [1,2], s = [1,2,3]
  • 输出: 2
  • 解释:你有两个孩子和三块小饼干,2 个孩子的胃口值分别是 1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出 2.

提示:

  • 1 <= g.length <= 3 * 10^4
  • 0 <= s.length <= 3 * 10^4
  • 1 <= g[i], s[j] <= 2^31 - 1

💡解题思路

为了满足更多的小孩,就不要造成饼干尺寸的浪费。

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

如图:

可不可以 先遍历 饼干,在遍历胃口呢?

其实是不可以的。

外面的 for 是里的下标 i 是固定移动的,而 if 里面的下标 index 是符合条件才移动的。

如果 for 控制的是饼干, if 控制胃口,就是出现如下情况 :

if 里的 index 指向 胃口 10, for 里的 i 指向饼干 9,因为 饼干 9 满足不了 胃口 10,所以 i 持续向前移动,而 index 走不到s[index] >= g[i] 的逻辑,所以 index 不会移动,那么当 i 持续向前移动,最后所有的饼干都匹配不上。

所以 一定要 for 控制 胃口,里面的 if 控制饼干。

也可以换一个思路,小饼干先喂饱小胃口

代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};
  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(1)

细心的录友可以发现,这种写法,两个循环的顺序改变了,先遍历的饼干,在遍历的胃口,这是因为遍历顺序变了,我们是从小到大遍历。

我的理解是如果从小到大遍历的话,就for值小的,if值大的。如果从大到小开始遍历,就for值大的,if值小的。

💻实现代码

class Solution {
    // 思路1:优先考虑饼干,小饼干先喂饱小胃口
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = 0;
        int count = 0;
        for (int i = 0; i < s.length && start < g.length; i++) {
            if (s[i] >= g[start]) {
                start++;
                count++;
            }
        }
        return count;
    }
}

class Solution {
    // 思路2:优先考虑胃口,先喂饱大胃口
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int count = 0;
        int start = s.length - 1;
        // 遍历胃口
        for (int index = g.length - 1; index >= 0; index--) {
            if(start >= 0 && g[index] <= s[start]) {
                start--;
                count++;
            }
        }
        return count;
    }
}

376. 摆动序列 

题目链接: 376. 摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3)  是正负交替出现的。相反, [1,4,7,2,5]  和  [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

示例 2:

  • 输入: [1,17,5,10,13,15,10,5,16,8]
  • 输出: 7
  • 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

  • 输入: [1,2,3,4,5,6,7,8,9]
  • 输出: 2

💡解题思路

用示例二来举例,如图所示:

376.摆动序列

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

局部最优推出全局最优,并举不出反例,那么试试贪心!

(为方便表述,以下说的峰值都是指局部峰值)

实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点

在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡
# 情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:

它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。

如图,可以统一规则,删除左边的三个 2:

在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0

如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

# 情况二:数组首尾两端

所以本题统计峰值的时候,数组最左面和最右面如何统计呢?

题目中说了,如果只有两个不同的元素,那摆动序列也是 2。

例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。

因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。

这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。

不写死的话,如何和我们的判断规则结合在一起呢?

可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?

之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:

376.摆动序列1

针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)

情况三:单调坡度有平坡

在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:

图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。

之所以版本一会出问题,是因为我们实时更新了 prediff。

那么我们应该什么时候更新 prediff 呢?

我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡,如图:

💻实现代码

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            //得到当前差值
            curDiff = nums[i] - nums[i - 1];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

53. 最大子序和

题目链接:53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释:  连续子数组  [4,-1,2,1] 的和最大,为  6。

💡解题思路

贪心解法

贪心贪的是哪里呢?

如果 -2 1 在一起,计算起点的时候,一定是从 1 开始计算,因为负数只会拉低总和,这就是贪心贪的地方!

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和。

这相当于是暴力解法中的不断调整最大子序和区间的起始位置

那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?

区间的终止位置,其实就是如果 count 取到最大值了,及时记录下来了。例如如下代码:

if (count > result) result = count;

这样相当于是用 result 记录最大子序和区间和(变相的算是调整了终止位置)

如动画所示:

53.最大子序和

红色的起始位置就是贪心每次取 count 为正数的时候,开始一个区间的统计。

💻实现代码

class Solution {
    public int maxSubArray(int[] nums) {
        if (nums.length == 1){
            return nums[0];
        }
        int sum = Integer.MIN_VALUE;
        int count = 0;
        for (int i = 0; i < nums.length; i++){
            count += nums[i];
            sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)
            if (count <= 0){
                count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
            }
        }
       return sum;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1394717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RTC讲解

RTC&#xff08;Real Time Clock&#xff09;实时时钟 RTC实时时钟本质上是一个独立的定时器。RTC模块拥有一组连续计数的32位无符号计数器&#xff0c;在相应软件配置下&#xff0c;可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。 RTC模块和时钟配…

uniapp APP接入Paypal

1. 登录paypal开发者中心&#xff0c; 2. 选择 Apps & Credentials 点击 Create App创建应用&#xff0c;创建后点击编辑按钮&#xff0c;如图&#xff1a; 3. 进入应用详情&#xff0c;勾选Log in with PayPal点击 Advanced Settings 添加return URL等信息并保存。如图&a…

C++(13)——string

上篇文章中介绍了中部分函数的用法&#xff0c;本篇文章将继续对其他的函数进行介绍&#xff1a; 1. substr: string substr (size_t pos 0, size_t len npos) const; 函数的两个参数如上述代码所示&#xff0c;此函数的主要作用是根据一个已有的的对象的起始坐标开始&a…

快手二面:节流和防抖知道吗?

面试官:节流与防抖&#xff0c;说说两者各自适用场景&#xff1f; 回答&#xff1a;面试官&#xff0c;在前端开发中&#xff0c;节流&#xff08;Throttle&#xff09;和防抖&#xff08;Debounce&#xff09;是两种常用的优化高频率执行JavaScript代码的技术。我将分别阐述它…

ICC2:channel power plan/power switch的添加方法

更多学习内容请关注「拾陆楼」知识星球 拾陆楼知识星球入口 往期文章链接: low power与pg strategy (lib cell pin connect) low power与pg strategy(pg mesh) low power与pg

什么是技术架构?架构和框架之间的区别是什么?怎样去做好架构设计?(一)

什么是技术架构?架构和框架之间的区别是什么?怎样去做好架构设计?(一)。 在软件行业,对于什么是架构,都有很多的争论,每个人都有自己的理解。在不同的书籍上, 不同的作者, 对于架构的定义也不统一, 角度不同, 定义不同。 一、架构是什么 Linux 有架构,MySQL 有架构,J…

关于接口的安全性测试,这方法你学会了吗?

01、接口防刷 1.为什么会有人要刷接口&#xff1f; 牟利&#xff1a;黄牛在 12306 网上抢票再倒卖。 恶意攻击竞争对手&#xff1a;如短信接口被请求一次&#xff0c;会触发几分钱的运营商费用&#xff0c;当量级大了也很可观。 压测&#xff1a;用apache bench 做压力测试…

鸿蒙开发实战-(ArkUI)List组件和Grid组件的使用

在我们常用的手机应用中&#xff0c;经常会见到一些数据列表&#xff0c;如设置页面、通讯录、商品列表等。下图中两个页面都包含列表&#xff0c;“首页”页面中包含两个网格布局&#xff0c;“商城”页面中包含一个商品列表。 上图中的列表中都包含一系列相同宽度的列表项&am…

python使用贪心算法求最大整数问题

对于使用贪心算法的一个比较经典的问题&#xff0c;主要是为了解决最大整数的拼接问题&#xff0c;如果给定一个列表&#xff0c;这个列表中所包括的是一些非负整数&#xff0c;如果对这些整数进行组合&#xff0c;怎样才能组合出一个最大的整数&#xff0c;这里要注意一个问题…

自动派单系统哪家好?实现自动派单对于管理有什么帮助?

随着科技的发展&#xff0c;自动化管理已成为各行各业追求效率与精准的关键。在维修服务领域&#xff0c;自动派单系统的出现为管理员和用户带来了前所未有的便捷。通过自动匹配维修人员、实时通知用户进度等功能&#xff0c;自动派单系统不仅提高了派单的准确性和效率&#xf…

django后台进行加密手机号字段,加密存储,解密显示

需求: 1 &#xff1a;员工在填写用户的手机号时&#xff0c;直接填写&#xff0c;在django后台中输入 2&#xff1a;当员工在后台确认要存储到数据库时&#xff0c;后台将会把手机号进行加密存储&#xff0c;当数据库被黑之后&#xff0c;手机号字段为加密字符 3&#xff1a;员…

Python基础第一篇(Python概念介绍)

文章目录 一、前言&#xff1a;二、第一个Python程序三&#xff0c;理解Python的解释器四&#xff0c;Python解释器的使用五&#xff0c;Python开发环境 一、前言&#xff1a; 欢迎来到我们的Python学习专栏。在这里&#xff0c;我们将一起探索Python这门强大、灵活、易于学习…

微信小程序+前后端开发学习材料2-(视图+基本内容+表单组件)

学习来源 视图 1.swiper 滑块视图容器。其中只可放置swiper-item组件&#xff0c;否则会导致未定义的行为。 显示面板指示点indicator-dots 基础内容 1.icon 图标组件 实例演示 2.progress 进度条。组件属性的长度单位默认为px&#xff0c;咱用rpx。 实例演示 这…

SVO编译

文章目录 软件版本错误编译运行轨迹路径保存运行TUM数据集 附录针对svo slam的/svo/pose_imu转为tum格式代码 软件版本 ubuntu 20 rosnoeticSVO SLAM虚拟机 windows 11 错误 常见的git clone问题可以使用DevSidecar解决&#xff0c;在 加速服务-基本设置-绑定IP 设置为0.0.0…

Cinder对接NFS文件系统实验详解

2、对接NFS&#xff08;Network File System&#xff1a;网络文件系统&#xff09;实验 实验前的准备&#xff1a; 完整克隆一台虚拟机作为Cinder的后端存储&#xff08;IP为192.168.100.40&#xff09; Cinder节点作为服务端&#xff0c;把Controller作为客户端 Controlle…

git仓库使用说明

Git软件使用 1.先下载git相关软件 下载地址&#xff1a; Git - Downloading Package (git-scm.com) 下载其中一个安装 2.打开gitee网站&#xff0c;注册账号 3.打开个人中心&#xff0c;选择ssh公钥&#xff0c;查看如何生成公钥 4.生成公钥后&#xff0c;添加相应的公钥 …

Docker 安装 PHP

Docker 安装 PHP 安装 PHP 镜像 方法一、docker pull php 查找 Docker Hub 上的 php 镜像: 可以通过 Sort by 查看其他版本的 php&#xff0c;默认是最新版本 php:latest。 此外&#xff0c;我们还可以用 docker search php 命令来查看可用版本&#xff1a; runoobrunoob:…

AI 视频 | HiDream.ai 支持长视频,突破 4 秒限制!

2024 年&#xff0c;AI 视频领域大有可为。那么想卷 AI 视频领域&#xff0c;首先得掌握几个 AI 视频的工具。 之前的文章已经分享了一些常用的 AI 视频工具&#xff0c;比如 Pika、Runway Gen-2、Moonvalley、NeverEnds、DomoAI 以及 Stable Video Diffusion。 这些「往期 A…

关于Access中列的冻结的知识,看这篇就够了

在Microsoft Access中&#xff0c;有一个名为“冻结”的功能&#xff0c;使用户可以在滚动到另一个区域时保持数据表的某个区域可见。 可以使用冻结功能冻结数据表中的表、查询、窗体、视图或存储过程中的一个或多个字段。你冻结的字段将移动到数据表的左侧位置。 如何在Micr…

Unity关于纹理图片格式带来的内存问题和对预制体批量格式和大小减半处理

我们经常会遇到内存问题&#xff0c;这次就是遇到很多图片的默认格式被改成了RGB32&#xff0c;导致Android打包后运行内存明显增加。 发生了什么 打包Android后&#xff0c;发现经常崩溃&#xff0c;明显内存可能除了问题&#xff0c;看了内存后发现了问题。 见下图&#xf…