Azure Machine Learning - 聊天机器人构建

news2025/1/10 11:33:31

目录

  • 聊天机器人架构概述
    • 消耗成本
    • 环境准备
    • 打开开发环境
    • 部署和运行
      • 将聊天应用部署到 Azure
      • 使用聊天应用从 PDF 文件获取答案
      • 使用聊天应用设置更改答复行为

本文介绍如何部署和运行适用于 Python 的企业聊天应用示例。 此示例使用 Python、Azure OpenAI 服务和 Azure AI 搜索中的检索扩充生成(RAG)实现聊天应用,以获取虚构公司员工福利的解答。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人

聊天机器人架构概述

下图显示了聊天应用的简单体系结构:

file

体系结构的关键组件包括:

  • 用于托管交互式聊天体验的 Web 应用程序。
  • 用于从自己的数据获取答案的 Azure AI 搜索资源。
  • 要提供的 Azure OpenAI 服务:
    • 用于增强自有数据搜索性能的关键字。
    • 来自 OpenAI 模型的解答。
    • 来自 ada 模型的嵌入

消耗成本

此体系结构中的大多数资源使用基本定价层或消耗定价层。 消耗定价基于使用量,这意味着你只需为使用的部分付费。 完成本文将收取一定费用,但费用极少。 完成本文后,可以删除资源以停止产生费用。

详细了解 示例存储库中的成本。

环境准备

开发容器 环境提供了完成本文所需的所有依赖项。 可以在 GitHub Codespaces(在浏览器中)或在本地使用 Visual Studio Code 运行开发容器。

若要使用本文,需要满足以下先决条件:

  1. Azure 订阅 - 免费创建订阅
  2. Azure 帐户权限 - Azure 帐户必须具有 Microsoft.Authorization/roleAssignments/write 权限,例如[用户访问管理员]或[所有者]。
  3. 已在所需的 Azure 订阅中授予对 Azure OpenAI 的访问权限。 目前,仅应用程序授予对此服务的访问权限。 可以通过在 https://aka.ms/oai/access 上填写表单来申请对 Azure OpenAI 的访问权限。 如果有任何问题,请在此存储库上提出问题以联系Azure。
  4. [Azure 开发人员 CLI]
  5. Docker Desktop - 启动 Docker Desktop (如果尚未运行)
  6. Visual Studio Code
  7. 开发容器扩展

打开开发环境

现在从安装了完成本文所需的所有依赖项的开发环境开始。

适用于 Visual Studio Code 的开发容器扩展要求在本地计算机上安装 Docker。 扩展使用 Docker 主机在本地托管开发容器,该主机已预安装完成本文所需的合适的开发人员工具和依赖项。

  1. 在空目录的上下文中打开 Visual Studio Code

  2. 确保在 Visual Studio Code 中安装了开发容器扩展。

  3. 在编辑器中打开新终端。 可以使用主菜单导航到“终端”菜单选项,然后选择“新建终端”选项。

file

  1. 使用 Azure Developer CLI 登录到 Azure。

    azd auth login
    

    出现提示时,请从终端复制代码,然后将其粘贴到浏览器中。 按照说明使用 Azure 帐户进行身份验证。

  2. 创建一个文件夹并将其初始化,以在 Azure Developer CLI 中使用示例项目:

    azd init -t azure-search-openai-demo
    

    无需克隆此存储库。

  3. 打开命令面板,搜索“开发容器”命令,然后选择“开发容器:在容器中重新打开”。Visual Studio Code 可能会自动提示重新打开在开发容器中的现有文件夹。 这在功能上等效于使用命令面板重新打开容器中的当前工作区。

  4. 再次重新打开终端窗口(Ctrl + `),将其保持打开状态。

  5. 此项目中的剩余练习在此开发容器的上下文中进行。

部署和运行

示例存储库包含将聊天应用部署到 Azure 所需的所有代码和配置文件。 以下步骤将指导完成将示例部署到 Azure 的过程。

将聊天应用部署到 Azure

重要

在本部分中创建的 Azure 资源的即时成本,主要来自 Azure AI 搜索资源。 即使在完全执行命令之前中断命令,这些资源也会产生费用。

  1. 运行以下 Azure Developer CLI 命令来预配 Azure 资源并部署源代码:

    azd up
    
  2. 当系统提示输入环境名称时,请使用小写字母的简短名称。 例如 myenv。 它用作资源组名称的一部分。

  3. 出现提示时,选择要在其中创建资源的订阅。

  4. 当系统第一次提示你选择位置时,请选择你附近的位置。 此位置用于大多数资源,包括托管。

  5. 如果系统提示你输入 OpenAI 模型的位置,请选择你附近的位置。 如果可以使用与第一个位置相同的位置,请选择该位置。

  6. 等待应用部署完成。 部署可能需要 5-10 分钟才能完成。

  7. 成功部署应用程序后,终端中会显示一个 URL。

  8. 选择标记为 (✓) Done: Deploying service webapp 的 URL 在浏览器中打开聊天应用程序。
    file

使用聊天应用从 PDF 文件获取答案

聊天应用预加载了 PDF 文件中的员工权益信息。 可以使用聊天应用询问有关权益的问题。 以下步骤将引导你完成使用聊天应用的过程。

  1. 在浏览器中,选择或输入 在性能评审中会发生什么情况? 在聊天文本框中。

file
2. 从答案中选择引文。

file

  1. 在右窗格中,使用选项卡了解如何生成答案。

    Tab说明
    思考过程这是聊天中交互的脚本。 可以查看系统提示 (content) 和用户问题 (content)。
    支持内容这包括用于回答你的问题的信息和来源材料。 开发人员设置中记录了来源材料引文的数量。 默认值为 3。
    引文这会显示包含引文的原始页面。
  2. 完成后,再次选择所选选项卡以关闭窗格。

使用聊天应用设置更改答复行为

聊天的智能由 OpenAI 模型和用于与模型交互的设置确定。

file

设置说明
替代提示模板这是用于生成答案的提示。
检索这么多搜索结果这是用于生成答案的搜索结果数。 可以在引文的“思考过程”和“支持内容”选项卡中看到这些返回的来源。
排除类别这是从搜索结果中排除的文档类别。
使用语义排名程序进行检索这是 Azure AI 搜索的一项功能,它使用机器学习来提高搜索结果的相关性。
使用查询上下文摘要而不是整个文档当同时检查 Use semantic rankerUse query-contextual summaries 时,LLM 使用从排名最高的文档中的关键段落(而不是所有段落)中提取的标题。
建议后续问题让聊天应用根据答案建议后续问题。
检索模式矢量 + 文本意味着搜索结果基于文档的文本和文档嵌入。 矢量意味着搜索结果基于文档嵌入。 文本意味着搜索结果基于文档的文本。
流式聊天完成响应流式处理响应,而不是等待,直到完整的答案可用于响应。

以下步骤将引导你完成更改设置的过程。

  1. 在浏览器中,选择**“开发人员设置**”选项卡。

  2. 选中“建议后续问题”复选框,然后再次提出相同的问题。

    What happens in a performance review?
    

    聊天返回了建议的后续问题,例如:

    1. What is the frequency of performance reviews?
    2. How can employees prepare for a performance review?
    3. Can employees dispute the feedback received during the performance review?
    
  3. 在“设置”选项卡中,取消选择“使用语义排名程序进行检索”。

  4. 再次问同样的问题?

    What happens in a performance review?
    
  5. 答案有什么区别?

    借助语义排名器:在 Contoso Electronics 进行绩效审查期间,员工将有机会讨论他们在工作场所的成功和挑战(1)。 审查将提供积极和建设性的反馈,以帮助员工发展和发展其角色(1)。 员工将收到绩效评审的书面摘要,其中包括对即将到来的一年(1)绩效、反馈和目标和目标的评级。 绩效评审是经理和员工之间的双向对话(1)。

    没有语义排名器:在 Contoso Electronics 进行绩效评审期间,员工有机会在工作场所讨论他们的成功和挑战。 提供了积极和建设性的反馈,以帮助员工发展和发展其角色。 给出绩效评审的书面摘要,包括即将来临的一年的性能、反馈和目标评分。 审查是经理和员工之间的双向对话(1)。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1393735.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【记录】解决 git 仓库突然出现连接失败

问题描述 今天在 push 代码代码的时候突然发现无法 push(但是我可以正常打开 Gihub),这可不行,我可是 git 的重度使用者😍,我所有的代码都托管在了 Github 上,没有它我的日子怎么活啊!!&#x…

通讯录(C语言版)(静态通讯录)

✨欢迎来到脑子不好的小菜鸟的文章✨ 🎈创作不易,麻烦点点赞哦🎈 所属专栏:项目 我的主页:脑子不好的小菜鸟 文章特点:关键点和步骤讲解放在 代码相应位置 引言: 1.菜单 通讯录也如同游戏&…

【史上最全】前端页面深入浅出浏览器渲染原理

前言 浏览器的核心组件,即通常所说的浏览器内核,是支撑整个浏览器运行的关键性底层软件架构,它由两个关键组成部分构成:一个是负责网页内容解析和渲染的渲染引擎,另一个则是用于执行JavaScript代码的JS引擎。各浏览器厂…

汽车芯片「新变量」

编者按:汽车行业的格局重构和技术革新,也在推动芯片赛道进入变革周期。不同商业模式的博弈,持续升温。 对于智能汽车来说,过去几年经历了多轮硬件和软件的性能迭代,甚至是革新,如今,市场正在进…

阿里云国外云服务器多少钱?2024年最新价格

阿里云国外服务器优惠活动「全球云服务器精选特惠」,国外服务器租用价格24元一个月起,免备案适合搭建网站,部署独立站等业务场景,阿里云服务器网aliyunfuwuqi.com分享阿里云国外服务器优惠活动: 全球云服务器精选特惠…

DevExpress Web Report Designer中文教程 - 如何自定义控件和表达式注册?

获取DevExpress v23.2正式版下载(Q技术交流:909157416) 自定义控件集成 DevExpress Reports中的自定义报表控件注册变得更加容易,为了满足web开发人员的需求,DevExpressv23.1包括简化的自定义控件注册支持(在服务器级别实现)。如…

时序分解 | Matlab实现CEEMDAN+PE自适应噪声完备集合经验模态分解+排列熵计算

时序分解 | Matlab实现CEEMDANPE自适应噪声完备集合经验模态分解排列熵计算 目录 时序分解 | Matlab实现CEEMDANPE自适应噪声完备集合经验模态分解排列熵计算效果一览基本介绍程序设计参考资料 效果一览 基本介绍 CEEMDANPE自适应噪声完备集合经验模态分解排列熵计算 运行环境m…

Spring Boot 整合 Camunda 实现工作流

工作流是我们开发企业应用几乎必备的一项功能,工作流引擎发展至今已经有非常多的产品。最近正好在接触Camunda,所以来做个简单的入门整合介绍。如果您也刚好在调研或者刚开始计划接入,希望本文对您有所帮助。如果您是一名Java开发或Spring框架…

echarts格式化X,Y轴坐标的值(格式单位)

现在一个需求要求将y轴数据切换为万单位 加入一下代码 yAxis: {type: "value",axisLabel: {formatter: function (value, index) {return value > 10000 ? parseInt(value / 10000) "万" : value;},},}, 效果如下 其中,axisLabel支持两种…

面试题 05.06. 整数转换(力扣)(OJ题)

题目链接:面试题 05.06. 整数转换 - 力扣(LeetCode) 所属专栏:刷题 整数转换。编写一个函数,确定需要改变几个位才能将整数A转成整数B。 示例1: 输入:A 29 (或者0b11101), B 15…

Spring Web文件上传功能简述

文章目录 正文简单文件上传文件写入 总结 正文 在日常项目开发过程中,文件上传是一个非常常见的功能,当然正规项目都有专门的文件服务器保存上传的文件,实际只需要保存文件路径链接到数据库中即可,但在小型项目中可能没有专门的文…

【控制篇 / 分流】(7.4) ❀ 03. 对国内和国际IP网段访问进行分流 ❀ FortiGate 防火墙

【简介】公司有两条宽带用来上网,一条电信,一条IPLS国际专线,由于IPLS仅有2M,且价格昂贵,领导要求,访问国内IP走电信,国际IP走IPLS,那么应该怎么做? 国内IP地址组 我们已…

Pytorch各种Dropout层应用于详解

目录 torch框架Dropout functions详解 dropout 用途 用法 使用技巧 参数 数学理论公式 代码示例 alpha_dropout 用途 用法 使用技巧 参数 数学理论公式 代码示例 feature_alpha_dropout 用途 用法 使用技巧 参数 数学理论 代码示例 dropout1d 用途 用…

echarts X轴数据过多导致重叠展示不全问题(已解决)

问题 x轴数据过多导致坐标轴数据重叠 修改后 List item interval为0代表每个标签都显示,即间隔为0! 将其设置为我们想要的数值即可。 xAxis: {type: "time",splitLine: {show: false,},axisLine: {show: false,lineStyle: {color: &qu…

正则表达式中的“回引用(回溯)”——别名引用与序号引用的差异及正则表达式中的“P”关键字

读到一段巧妙的正则表达式,勾起我对正则表达式欠缺知识点的探寻: P y t h o n Python Python正则表达式中的“回引用(回溯)”——分组别名引用与序号引用的差异及正则表达式中的“P”关键字详情。 (笔记模板由python脚本于2024年01月14日 07:49:35创建&a…

RT-Thread Studio学习(十四)ADC

RT-Thread Studio学习(十四)ADC 一、简介二、新建RT-Thread项目并使用外部时钟三、启用ADC四、测试 一、简介 本文将基于STM32F407VET芯片介绍如何在RT-Thread Studio开发环境下使用ADC设备。硬件及开发环境如下: OS WIN10STM32F407VET6STM…

16.5 参考文献——深度学习定位

16.5 一种高效鲁棒的多楼层室内环境指纹定位方法 同济大学 Zhao Y, Gong W, Li L, et al. An Efficient and Robust Fingerprint Based Localization Method for Multi Floor Indoor Environment[J]. IEEEa Internet of Things Journal, 2023. 2.相关工作 B.基于深度学习的…

情人节专属--html5 canvas制作情人节告白爱心动画特效

💖效果展示 💖html展示 <!doctype html> <html> <head> <meta charset=

2024杭州国际智慧城市,人工智能,安防展览会(杭州智博会)

在智能化浪潮的冲击下&#xff0c;我们的生活与环境正在经历一场深刻的变革。这是一场前所未有的技术革命&#xff0c;它以前所未有的速度和广度&#xff0c;改变着我们的生活方式、工作方式、思维方式和社会结构。在这场变革中&#xff0c;有的人选择激流勇进&#xff0c;拥抱…