e2studio开发三轴加速度计LIS2DW12(3)----检测活动和静止状态

news2024/11/26 17:25:09

e2studio开发三轴加速度计LIS2DW12.3--检测活动和静止状态

  • 概述
  • 视频教学
  • 样品申请
  • 源码下载
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • IIC属性配置
  • 初始换管脚
  • IIC配置
  • R_IIC_MASTER_Open()函数原型
  • R_IIC_MASTER_Write()函数原型
  • R_IIC_MASTER_Read()函数原型
  • sci_i2c_master_callback()回调函数
  • INT1设置
  • 参考程序
  • 初始换管脚
  • 获取ID
  • 复位操作
  • BDU设置
  • 开启INT1中断
  • 设置传感器的量程
  • 配置过滤器链
  • 配置电源模式
  • 设置输出数据速率
  • 中断判断加速度数据状态
  • 主程序
  • 演示

概述

本文将介绍实时获取和处理加速度数据。程序的核心流程包括初始化硬件接口、配置加速度计的参数,以及通过轮询检查中断信号来不断读取加速度数据。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1yc411x7u8/

e2studio开发三轴加速度计LIS2DW12(3)----检测活动和静止状态

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

https://download.csdn.net/download/qq_24312945/88740624

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL来进行演示。
在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述
需要修改XTAL为12M。

在这里插入图片描述

UART配置

在这里插入图片描述
点击Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。
在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。
在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

 /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);


回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述
在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif

PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

IIC属性配置

查看手册,可以得知LIS2DW12的IIC地址为“0011000” 或者 “0011001”,即0x18或0x19。

在这里插入图片描述

初始换管脚

由于需要向LIS2DW12_I2C_ADD_L写入以及为IIC模式。

在这里插入图片描述
在这里插入图片描述

所以使能CS为高电平,配置为IIC模式。

在这里插入图片描述

配置SA0为低电平。

在这里插入图片描述

    R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_00, BSP_IO_LEVEL_HIGH);
    R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_01, BSP_IO_LEVEL_LOW);

IIC配置

配置RA4M2的I2C接口,使其作为I2C master进行通信。
查看开发板原理图,对应的IIC为P407和P408。

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

在这里插入图片描述

设置IIC的配置,需要注意从机的地址。

在这里插入图片描述

R_IIC_MASTER_Open()函数原型

R_IIC_MASTER_Open()函数为执行IIC初始化,开启配置如下所示。

    /* Initialize the I2C module */
    err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);
    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函数原型

在这里插入图片描述
R_IIC_MASTER_Write()函数是向IIC设备中写入数据,写入格式如下所示。

    err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, &reg, 1, true);
    assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函数原型

在这里插入图片描述

R_SCI_I2C_Read()函数是向IIC设备中读取数据,读取格式如下所示。

    /* Read data from I2C slave */
    err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false);
    assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回调函数

对于数据是否发送完毕,可以查看是否获取到I2C_MASTER_EVENT_TX_COMPLETE字段。

在这里插入图片描述

/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{
    i2c_event = I2C_MASTER_EVENT_ABORTED;
    if (NULL != p_args)
    {
        /* capture callback event for validating the i2c transfer event*/
        i2c_event = p_args->event;
    }
}

INT1设置

数据准备完毕可以通过INT1获取中断信号。

在这里插入图片描述

INT1接入P015,需要配置P015为输入模式。

在这里插入图片描述
在这里插入图片描述

配置如下所示。

在这里插入图片描述

参考程序

https://github.com/STMicroelectronics/lis2dw12-pid

初始换管脚

由于需要向LIS2DW12_I2C_ADD_H写入以及为IIC模式。

在这里插入图片描述

所以使能CS为高电平,配置为IIC模式。
配置SA0为高电平。

     R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_00, BSP_IO_LEVEL_HIGH);
       R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_01, BSP_IO_LEVEL_LOW);


       /* Initialize the I2C module */
       err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);
       /* Handle any errors. This function should be defined by the user. */
       assert(FSP_SUCCESS == err);

       /* Initialize mems driver interface */
       stmdev_ctx_t dev_ctx;
		lis2dw12_reg_t int_route;
       dev_ctx.write_reg = platform_write;
       dev_ctx.read_reg = platform_read;
       dev_ctx.handle = &SENSOR_BUS;
       /* Wait sensor boot time */
       platform_delay(BOOT_TIME);

获取ID

我们可以向WHO_AM_I (0Fh)获取固定值,判断是否为0x44。
在这里插入图片描述

lis2dw12_device_id_get为获取函数。
在这里插入图片描述

对应的获取ID驱动程序,如下所示。

       /* Check device ID */
       lis2dw12_device_id_get(&dev_ctx, &whoamI);
       printf("LIS2DW12_ID=0x%x,whoamI=0x%x\n",LIS2DW12_ID,whoamI);
       if (whoamI != LIS2DW12_ID)
           while (1) {
         /* manage here device not found */
           }

复位操作

可以向CTRL2 (21h)的SOFT_RESET寄存器写入1进行复位。

在这里插入图片描述
lis2dw12_reset_set为重置函数。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Restore default configuration */
  lis2dw12_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lis2dw12_reset_get(&dev_ctx, &rst);
  } while (rst);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL2 (21h)的BDU寄存器写入1进行开启。

在这里插入图片描述
对应的驱动程序,如下所示。

  /* Enable Block Data Update */
  lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

开启INT1中断

设置中断通知方式。LIS2DW12_INT_LATCHED 表明使用锁存型中断,意味着中断信号会保持激活状态,直到被读取或者清除。

在这里插入图片描述

  lis2dw12_int_notification_set(&dev_ctx, LIS2DW12_INT_LATCHED);

设置中断引脚的极性。LIS2DW12_ACTIVE_LOW 指示中断引脚在激活时是低电平。

在这里插入图片描述

  lis2dw12_pin_polarity_set(&dev_ctx, LIS2DW12_ACTIVE_LOW);

读取 INT1 引脚的当前中断路由配置到 ctrl4_int1_pad 结构体中,(CTRL4_INT1_PAD_CTRL, 地址为 0x23h)这个寄存器用于配置加速度计的中断1引脚(INT1)的行为。
INT1_6D: 当设置为1时,6D定位识别的中断会被路由到INT1引脚。
INT1_SINGLE_TAP: 单击识别中断的启用/禁用。
INT1_WU: 唤醒识别中断的启用/禁用。
INT1_FF: 自由落体识别中断的启用/禁用。
INT1_TAP: 双击识别中断的启用/禁用。
INT1_DIFF5: FIFO满识别中断的启用/禁用。
INT1_FTH: FIFO阈值中断的启用/禁用。
INT1_DRDY: 数据就绪(Data-Ready)中断的启用/禁用。

在这里插入图片描述

需要将INT1_DRDY置为1。
然后再将数据写入到(CTRL4_INT1_PAD_CTRL, 地址为 0x23h)这个寄存器中。

  lis2dw12_pin_int1_route_get(&dev_ctx, &ctrl4_int1_pad);
  ctrl4_int1_pad.int1_drdy = PROPERTY_ENABLE;
  lis2dw12_pin_int1_route_set(&dev_ctx, &ctrl4_int1_pad);

设置传感器的量程

FS[1:0] - 全量程选择:这两个位用于设置传感器的量程。量程决定了传感器可以测量的最大加速度值。例如,量程可以设置为±2g、±4g、±8g或±16g。这允许用户根据应用的特定需求调整传感器的灵敏度。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Set full scale */
  lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);

配置过滤器链

lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);:设置加速度计输出的过滤器路径。这里选择了输出上的低通滤波器(LPF),用于去除高频噪声。
lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_10);设置过滤器的带宽。LIS2DW12_ODR_DIV_10 表明带宽设置为输出数据率(ODR)的十分之一。

配置电源模式

lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_CONT_LOW_PWR_12bit);配置电源模式。这里设置为连续低功耗模式,且以 12 位分辨率运行。

设置输出数据速率

lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_SET_SW_TRIG);设置加速度计的数据输出速率。LIS2DW12_XL_SET_SW_TRIG 可能表示使用软件触发来设置数据输出速率。

  /* Wait sensor boot time */
  platform_delay(BOOT_TIME);
  /* Check device ID */
  lis2dw12_device_id_get(&dev_ctx, &whoamI);

  if (whoamI != LIS2DW12_ID)
    while (1) {
      /* manage here device not found */
    }

  /* Restore default configuration */
  lis2dw12_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    lis2dw12_reset_get(&dev_ctx, &rst);
  } while (rst);

  /* Enable Block Data Update */
  lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

  lis2dw12_int_notification_set(&dev_ctx, LIS2DW12_INT_LATCHED);
  lis2dw12_pin_polarity_set(&dev_ctx, LIS2DW12_ACTIVE_LOW);
  lis2dw12_pin_int1_route_get(&dev_ctx, &ctrl4_int1_pad);
  ctrl4_int1_pad.int1_drdy = PROPERTY_ENABLE;
  lis2dw12_pin_int1_route_set(&dev_ctx, &ctrl4_int1_pad);
  /* Set full scale */
  lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);
  /* Configure filtering chain accelerometer */
  lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);
  lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_10);
  /* Configure power mode and Output Data Rate */
  lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_CONT_LOW_PWR_12bit);
  lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_SET_SW_TRIG);


中断判断加速度数据状态

通过判断INT1管脚来判断数据是否准备完毕。
如果电平为低电平说明加速度数据已经准备完毕。

数据在28h-2Dh中。

在这里插入图片描述

在这里插入图片描述
加速度数据首先以原始格式(通常是整数)读取,然后需要转换为更有意义的单位,如毫重力(mg)。这里的转换函数 lis2dw12_from_fs2_to_mg() 根据加速度计的量程(这里假设为±2g)将原始数据转换为毫重力单位。
acceleration_mg[0] = lis2dw12_from_fs2_to_mg(data_raw_acceleration[0]); 等三行代码分别转换 X、Y、Z 轴的加速度数据。

在这里插入图片描述

● LIS2DW12 加速度计通常会有一个固定的位分辨率,比如 16 位(即输出值是一个 16 位的整数)。这意味着加速度计可以输出的不同值的总数是 2^16=65536。这些值均匀地分布在 -2g 到 +2g 的范围内。
● 因此,这个范围(4g 或者 4000 mg)被分成了 65536 个步长。
● 每个步长的大小是 4000 mg/65536≈0.061 mg/LSB
所以,函数中的乘法 ((float_t)lsb) * 0.061f 是将原始的整数值转换为以毫重力(mg)为单位的加速度值。这个转换对于将加速度计的原始读数转换为实际的物理测量值是必需的。

        while(1)
        {
            bsp_io_level_t p_port_value_port_015;
            R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_15, &p_port_value_port_015);
            if(p_port_value_port_015==0)
            {
                /* Read acceleration data */
                memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
                lis2dw12_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
                acceleration_mg[0] = lis2dw12_from_fs2_lp1_to_mg(
                                       data_raw_acceleration[0]);
                acceleration_mg[1] = lis2dw12_from_fs2_lp1_to_mg(
                                       data_raw_acceleration[1]);
                acceleration_mg[2] = lis2dw12_from_fs2_lp1_to_mg(
                                       data_raw_acceleration[2]);

                lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_SET_SW_TRIG);
                      printf("Acceleration [mg]:X=%4.2f\tY=%4.2f\tZ=%4.2f\r\n",acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
            }
        }

主程序

#include "hal_data.h"


#include <stdio.h>

#include "lis2dw12_reg.h"


fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}


/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{
    i2c_event = I2C_MASTER_EVENT_ABORTED;
    if (NULL != p_args)
    {
        /* capture callback event for validating the i2c transfer event*/
        i2c_event = p_args->event;
    }
}


#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif

PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}


FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER


#define SENSOR_BUS g_i2c_master0_ctrl
/* Private macro -------------------------------------------------------------*/
#define    BOOT_TIME            20 //ms

/* Private variables ---------------------------------------------------------*/
static int16_t data_raw_acceleration[3];
static float acceleration_mg[3];
static uint8_t whoamI, rst;
static uint8_t tx_buffer[1000];

/* Extern variables ----------------------------------------------------------*/

/* Private functions ---------------------------------------------------------*/
/*
 *   WARNING:
 *   Functions declare in this section are defined at the end of this file
 *   and are strictly related to the hardware platform used.
 *
 */
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp,
                              uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,
                             uint16_t len);
static void tx_com( uint8_t *tx_buffer, uint16_t len );
static void platform_delay(uint32_t ms);
static void platform_init(void);

static int16_t data_raw_acceleration[3];
static float acceleration_mg[3];
static lis2dw12_ctrl4_int1_pad_ctrl_t  ctrl4_int1_pad;
/*******************************************************************************************************************//**
 * main() is generated by the RA Configuration editor and is used to generate threads if an RTOS is used.  This function
 * is called by main() when no RTOS is used.
 **********************************************************************************************************************/
void hal_entry(void)
{
    /* TODO: add your own code here */

    /* Open the transfer instance with initial configuration. */
        err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
        assert(FSP_SUCCESS == err);

        printf("hello world!\n");


        R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_00, BSP_IO_LEVEL_HIGH);
        R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_01, BSP_IO_LEVEL_LOW);


        /* Initialize the I2C module */
        err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);
        /* Handle any errors. This function should be defined by the user. */
        assert(FSP_SUCCESS == err);

        /* Initialize mems driver interface */
        stmdev_ctx_t dev_ctx;
        dev_ctx.write_reg = platform_write;
        dev_ctx.read_reg = platform_read;
        dev_ctx.handle = &SENSOR_BUS;
        /* Wait sensor boot time */
        platform_delay(BOOT_TIME);
        /* Check device ID */
        lis2dw12_device_id_get(&dev_ctx, &whoamI);
        printf("LIS2DW12_ID=0x%x,whoamI=0x%x\n",LIS2DW12_ID,whoamI);
        if (whoamI != LIS2DW12_ID)
            while (1) {
          /* manage here device not found */
            }

        /* Restore default configuration */
        lis2dw12_reset_set(&dev_ctx, PROPERTY_ENABLE);

        do {
          lis2dw12_reset_get(&dev_ctx, &rst);
        } while (rst);

        /* Enable Block Data Update */
        lis2dw12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

        lis2dw12_int_notification_set(&dev_ctx, LIS2DW12_INT_LATCHED);
        lis2dw12_pin_polarity_set(&dev_ctx, LIS2DW12_ACTIVE_LOW);
        lis2dw12_pin_int1_route_get(&dev_ctx, &ctrl4_int1_pad);
        ctrl4_int1_pad.int1_drdy = PROPERTY_ENABLE;
        lis2dw12_pin_int1_route_set(&dev_ctx, &ctrl4_int1_pad);
       /* Set full scale */
        lis2dw12_full_scale_set(&dev_ctx, LIS2DW12_2g);
        /* Configure filtering chain accelerometer */
        lis2dw12_filter_path_set(&dev_ctx, LIS2DW12_LPF_ON_OUT);
        lis2dw12_filter_bandwidth_set(&dev_ctx, LIS2DW12_ODR_DIV_10);
        /* Configure power mode and Output Data Rate */
        lis2dw12_power_mode_set(&dev_ctx, LIS2DW12_CONT_LOW_PWR_12bit);
        lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_SET_SW_TRIG);


        while(1)
        {
            bsp_io_level_t p_port_value_port_015;
            R_IOPORT_PinRead(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_15, &p_port_value_port_015);
            if(p_port_value_port_015==0)
            {
                /* Read acceleration data */
                memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
                lis2dw12_acceleration_raw_get(&dev_ctx, data_raw_acceleration);
                acceleration_mg[0] = lis2dw12_from_fs2_lp1_to_mg(
                                       data_raw_acceleration[0]);
                acceleration_mg[1] = lis2dw12_from_fs2_lp1_to_mg(
                                       data_raw_acceleration[1]);
                acceleration_mg[2] = lis2dw12_from_fs2_lp1_to_mg(
                                       data_raw_acceleration[2]);

                lis2dw12_data_rate_set(&dev_ctx, LIS2DW12_XL_SET_SW_TRIG);
                      printf("Acceleration [mg]:X=%4.2f\tY=%4.2f\tZ=%4.2f\r\n",acceleration_mg[0], acceleration_mg[1], acceleration_mg[2]);
            }
        }



#if BSP_TZ_SECURE_BUILD
    /* Enter non-secure code */
    R_BSP_NonSecureEnter();
#endif
}

演示

INT端口电平逻辑如下所示。
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1393302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【征服redis8】Redis的AOF持久化

Redis 支持多种持久化方式来保证数据的可靠性和持久性。前面我们介绍了RDB方式。我们我们介绍第二种方式——AOF&#xff08;Append Only File&#xff09;机制是一种常用的持久化方式&#xff0c;它记录了所有对 Redis 数据库进行修改的命令&#xff0c;在 Redis 重启时可以使…

【Java】HttpServlet类中前后端交互三种方式(query string、form表单、JSON字符串)

在前后端的交互中&#xff0c;前端通过以下三种方式来与后端进行交互&#x1f31f; ✅query string ✅form表单 ✅JSON字符串 下面我们将书写这三种方式的后端代码并进行讲解 1、Query String QueryString即在url中写入键值对&#xff0c;一般用doGet方法进行交互 代码如下 …

读AI3.0笔记02_起源

1. 起源 1.1. 1955年&#xff0c;28岁的麦卡锡进入了达特茅斯学院的数学系 1.2. 该领域的正式确立可以追溯到1956年由一位名叫约翰麦卡锡的年轻数学家在达特茅斯学院举办的一场小型研讨会 1.2.1. 在1956年&#xff0c;即便是最先进的计算机&#xff0c;其速度也达不到现代智…

HarmonyOS —— buildMode 设置(对比 Android Build Varient)

前言 在安卓中 Build Variant 主要依赖模块&#xff08;module&#xff09;中 build.gradle 的 BuildType 和 ProductFlavor 提供的属性和方法&#xff0c;我们可以使用 Build Type 可以配置不同的构建方式、ProductFlavor 主要用来进行多渠道打包。 在鸿蒙中要做到同样像效果…

用CHAT分析高校体育智慧教学体系构建与探索研究现状

CHAT回复&#xff1a;现阶段&#xff0c;高校体育智慧教学体系的构建与探索研究还处于初级阶段&#xff0c;但全球数字化转型大潮的推动下&#xff0c;一些较为前沿的研究和实践已经开始出现&#xff1a; 1.教学平台的建设&#xff1a;很多高校已经开始尝试使用在线教育平台进行…

web蓝桥杯真题--9、水果拼盘

介绍 目前 CSS3 中新增的 Flex 弹性布局已经成为前端页面布局的首选方案&#xff0c;本题可以使用 Flex 属性快速完成布局。 准备 开始答题前&#xff0c;需要先打开本题的项目代码文件夹&#xff0c;目录结构如下&#xff1a; ├── css │ └── style.css ├── im…

【计算机图形学】习题课:Viewing

【计算机图形学】Viewing 部分问题与解答 CS100433 Computer Graphics Assignment 21 Proof the composed transformations defined in global coordinate frame is equivalent to the composed transformations defined in local coordinate frame but in different composing…

2024年腾讯云轻量服务器和CVM云服务器性能如何?

腾讯云轻量服务器和云服务器有什么区别&#xff1f;为什么轻量应用服务器价格便宜&#xff1f;是因为轻量服务器CPU内存性能比云服务器CVM性能差吗&#xff1f;轻量应用服务器适合中小企业或个人开发者搭建企业官网、博客论坛、微信小程序或开发测试环境&#xff0c;云服务器CV…

进阶Docker4:网桥模式、主机模式与自定义网络

目录 网络相关 子网掩码 网关 规则 docke网络配置 bridge模式 host模式 创建自定义网络(自定义IP) 网络相关 IP 子网掩码 网关 DNS 端口号 子网掩码 互联网是由许多小型网络构成的&#xff0c;每个网络上都有许多主机&#xff0c;这样便构成了一个有层次的结构。 IP 地…

新品发布 | 思腾合力深思系列「IW4235-4GRc」4U机架式高性能服务器

新品发布 | 思腾合力深思系列「IW4235-4GRc」4U机架式高性能服务器 Sitonholy 思腾合力 2024-01-17 17:35 发表于北京 采用第4/5代Intel Xeon 可扩展处理器 4U标准的机架式高性能服务器 极致性能提升 支持第4/5代Intel Xeon 可扩展处理器&#xff0c;CPU 3 UPI性能高达16 GT/s…

重置aws上的ssh默认登录端口

aws上的ec2机器&#xff0c;默认ssh的登录都是22&#xff0c;为了防止被黑&#xff0c;记录下修改该默认端口的方法 修改/etc/ssh/sshd_config文件,将Port 22注释去掉在上面的文件中&#xff0c;加入一行&#xff0c;你想要增加的端口号&#xff0c;格式和22一致注意&#xff1…

云原生场景下,AIGC 模型服务的工程挑战和应对

作者&#xff1a;徐之浩、车漾 “成本”、“性能”和 “效率”正在成为影响大模型生产和应用的三个核心因素&#xff0c;也是企业基础设施在面临生产、使用大模型时的全新挑战。AI 领域的快速发展不仅需要算法的突破&#xff0c;也需要工程的创新。 大模型推理对基础设施带来…

2024.1.18每日一题

LeetCode 2171.拿出最少数目的魔法豆 2171. 拿出最少数目的魔法豆 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定一个 正整数 数组 beans &#xff0c;其中每个整数表示一个袋子里装的魔法豆的数目。 请你从每个袋子中 拿出 一些豆子&#xff08;也可以 不拿出&a…

机器视觉系统在汽车车轮毂检测上的应用

将机器视觉用于轮毂检测&#xff0c;可以利用图像分析的方法来测量轮毂特征尺寸、判断轮毂形状&#xff0c;并获取其位置坐标等信息&#xff0c;从而能够辨识流水生产线上的各种款式和型号的汽车轮毂。 市面上对汽车车轮毂具体检测要求如下 &#xff1a; 1.为了分辨流水线上…

Chrome 开发者工具

Chrome 开发者工具 介绍控制面板时间线下载信息概要请求列表单个请求时间线优化时间线上耗时项 lighthouse 插件Performance&#xff08;性能指标&#xff09;Accessibility&#xff08;可访问性&#xff09;Best Practices&#xff08;最佳实践&#xff09;SEO&#xff08;搜索…

在 Jenkins 中使用 SSH Servers 配置文件上传路径

引言 在使用 Jenkins 进行持续集成和持续部署&#xff08;CI/CD&#xff09;的过程中&#xff0c;有时我们需要将构建好的文件上传到远程服务器。本文将介绍如何在 Jenkins 的 SSH Servers 配置中设置文件的上传目录&#xff0c;以及这些设置是如何组合以形成最终的上传路径。…

AJAX和Axios异步框架

AJAX&#xff1a;Asynchronous JavaScript And XML 异步的JavaScript和XML 作用&#xff1a;1、与服务器进行数据交换&#xff0c;通过AJAX可以给服务器发送请求&#xff0c;并获取服务器响应数据。使用了AJAX和服务器进行通信&#xff0c;就可以使用ajax和html来代替jsp页面了…

Python4Delphi安装及编译

1.下载或直接克隆python4delphi组件资源到指定目录,我这里下载到Components文件夹下,并对下载的文件夹进行了重命名为(P4D),重命名不是必须的 下载地址:https://github.com/pyscripter/python4delphi 2.安装 2.1在已下载的目录下进入Install文件夹,双击MultiInstaller.exe…

基于python+uniapp的网上订餐系统的设计与实现 微信小程序

考虑到实际生活中在晓海网上订餐方面的需要以及对该系统认真的分析&#xff0c;将系统权限按管理员和用户这两类涉及用户划分。 &#xff08;1&#xff09;用户功能需求 用户进入APP可以进行首页、系统公告、在线投诉、我的等操作&#xff0c;在我的页面可以对菜品评价、订单信…

医院网络安全建设:三网整体设计和云数据中心架构设计

医院网络安全问题涉及到医院日常管理多个方面&#xff0c;一旦医院信息管理系统在正常运行过程中受到外部恶意攻击&#xff0c;或者出现意外中断等情况&#xff0c;都会造成海量医疗数据信息的丢失。由于医院信息管理系统中存储了大量患者个人信息和治疗方案信息等&#xff0c;…