【AI】RTX2060 6G Ubuntu 22.04.1 LTS (Jammy Jellyfish) 部署Chinese-LLaMA-Alpaca-2

news2025/1/17 18:11:00

下载源码

cd ~/Downloads/ai
git clone --depth=1 https://gitee.com/ymcui/Chinese-LLaMA-Alpaca-2

创建venv

python3 -m venv venv
source venv/bin/activate

安装依赖

 pip install -r requirements.txt

已安装依赖列表

(venv) yeqiang@yeqiang-MS-7B23:~/Downloads/ai/Chinese-LLaMA-Alpaca-2$ pip list
Package                  Version
------------------------ ----------
accelerate               0.26.1
bitsandbytes             0.41.1
certifi                  2023.11.17
charset-normalizer       3.3.2
cmake                    3.28.1
filelock                 3.13.1
fsspec                   2023.12.2
huggingface-hub          0.17.3
idna                     3.6
Jinja2                   3.1.3
lit                      17.0.6
MarkupSafe               2.1.3
mpmath                   1.3.0
networkx                 3.2.1
numpy                    1.26.3
nvidia-cublas-cu11       11.10.3.66
nvidia-cuda-cupti-cu11   11.7.101
nvidia-cuda-nvrtc-cu11   11.7.99
nvidia-cuda-runtime-cu11 11.7.99
nvidia-cudnn-cu11        8.5.0.96
nvidia-cufft-cu11        10.9.0.58
nvidia-curand-cu11       10.2.10.91
nvidia-cusolver-cu11     11.4.0.1
nvidia-cusparse-cu11     11.7.4.91
nvidia-nccl-cu11         2.14.3
nvidia-nvtx-cu11         11.7.91
packaging                23.2
peft                     0.3.0
pip                      22.0.2
psutil                   5.9.7
PyYAML                   6.0.1
regex                    2023.12.25
requests                 2.31.0
safetensors              0.4.1
sentencepiece            0.1.99
setuptools               59.6.0
sympy                    1.12
tokenizers               0.14.1
torch                    2.0.1
tqdm                     4.66.1
transformers             4.35.0
triton                   2.0.0
typing_extensions        4.9.0
urllib3                  2.1.0
wheel                    0.42.0

下载编译llama.cpp

cd ~/Downloads/ai/
git clone --depth=1 https://gh.api.99988866.xyz/https://github.com/ggerganov/llama.cpp
cd llma.cpp
make -j6

编译成功

创建软链接

cd ~/Downloads/ai/Chinese-LLaMA-Alpaca-2/scripts/llama-cpp/
ln -s ~/Downloads/ai/llama.cpp/main .

下载模型

由于只有6G显存,只下载基础的对话模型chinese-alpaca-2-1.3b

浏览器打开地址:hfl/chinese-alpaca-2-1.3b at main

放到~/Downloads/ai 目录下

启动chat报错

继续折腾:

这两个文件需要手动在浏览器内下载到~/Downloads/ai/chinese-alpaca-2-1.3b

参考文档

转换模型

rm models/ -rf
mkdir models
cp ~/Downloads/ai/chinese-alpaca-2-1.3b models/ -v
python ~/Downloads/ai/llama.cpp/convert.py models/chinese-alpaca-2-1.3b/

转换日志

(venv) yeqiang@yeqiang-MS-7B23:~/Downloads/ai/Chinese-LLaMA-Alpaca-2$ python ~/Downloads/ai/llama.cpp/convert.py models/chinese-alpaca-2-1.3b/
/home/yeqiang/Downloads/ai/llama.cpp/gguf-py
Loading model file models/chinese-alpaca-2-1.3b/pytorch_model.bin
params = Params(n_vocab=55296, n_embd=4096, n_layer=4, n_ctx=4096, n_ff=11008, n_head=32, n_head_kv=32, f_norm_eps=1e-05, n_experts=None, n_experts_used=None, rope_scaling_type=None, f_rope_freq_base=10000.0, f_rope_scale=None, n_orig_ctx=None, rope_finetuned=None, ftype=None, path_model=PosixPath('models/chinese-alpaca-2-1.3b'))
Loading vocab file 'models/chinese-alpaca-2-1.3b/tokenizer.model', type 'spm'
Permuting layer 0
Permuting layer 1
Permuting layer 2
Permuting layer 3
model.embed_tokens.weight                        -> token_embd.weight                        | F16    | [55296, 4096]
model.layers.0.self_attn.q_proj.weight           -> blk.0.attn_q.weight                      | F16    | [4096, 4096]
model.layers.0.self_attn.k_proj.weight           -> blk.0.attn_k.weight                      | F16    | [4096, 4096]
model.layers.0.self_attn.v_proj.weight           -> blk.0.attn_v.weight                      | F16    | [4096, 4096]
model.layers.0.self_attn.o_proj.weight           -> blk.0.attn_output.weight                 | F16    | [4096, 4096]
skipping tensor blk.0.attn_rot_embd
model.layers.0.mlp.gate_proj.weight              -> blk.0.ffn_gate.weight                    | F16    | [11008, 4096]
model.layers.0.mlp.up_proj.weight                -> blk.0.ffn_up.weight                      | F16    | [11008, 4096]
model.layers.0.mlp.down_proj.weight              -> blk.0.ffn_down.weight                    | F16    | [4096, 11008]
model.layers.0.input_layernorm.weight            -> blk.0.attn_norm.weight                   | F16    | [4096]
model.layers.0.post_attention_layernorm.weight   -> blk.0.ffn_norm.weight                    | F16    | [4096]
model.layers.1.self_attn.q_proj.weight           -> blk.1.attn_q.weight                      | F16    | [4096, 4096]
model.layers.1.self_attn.k_proj.weight           -> blk.1.attn_k.weight                      | F16    | [4096, 4096]
model.layers.1.self_attn.v_proj.weight           -> blk.1.attn_v.weight                      | F16    | [4096, 4096]
model.layers.1.self_attn.o_proj.weight           -> blk.1.attn_output.weight                 | F16    | [4096, 4096]
skipping tensor blk.1.attn_rot_embd
model.layers.1.mlp.gate_proj.weight              -> blk.1.ffn_gate.weight                    | F16    | [11008, 4096]
model.layers.1.mlp.up_proj.weight                -> blk.1.ffn_up.weight                      | F16    | [11008, 4096]
model.layers.1.mlp.down_proj.weight              -> blk.1.ffn_down.weight                    | F16    | [4096, 11008]
model.layers.1.input_layernorm.weight            -> blk.1.attn_norm.weight                   | F16    | [4096]
model.layers.1.post_attention_layernorm.weight   -> blk.1.ffn_norm.weight                    | F16    | [4096]
model.layers.2.self_attn.q_proj.weight           -> blk.2.attn_q.weight                      | F16    | [4096, 4096]
model.layers.2.self_attn.k_proj.weight           -> blk.2.attn_k.weight                      | F16    | [4096, 4096]
model.layers.2.self_attn.v_proj.weight           -> blk.2.attn_v.weight                      | F16    | [4096, 4096]
model.layers.2.self_attn.o_proj.weight           -> blk.2.attn_output.weight                 | F16    | [4096, 4096]
skipping tensor blk.2.attn_rot_embd
model.layers.2.mlp.gate_proj.weight              -> blk.2.ffn_gate.weight                    | F16    | [11008, 4096]
model.layers.2.mlp.up_proj.weight                -> blk.2.ffn_up.weight                      | F16    | [11008, 4096]
model.layers.2.mlp.down_proj.weight              -> blk.2.ffn_down.weight                    | F16    | [4096, 11008]
model.layers.2.input_layernorm.weight            -> blk.2.attn_norm.weight                   | F16    | [4096]
model.layers.2.post_attention_layernorm.weight   -> blk.2.ffn_norm.weight                    | F16    | [4096]
model.layers.3.self_attn.q_proj.weight           -> blk.3.attn_q.weight                      | F16    | [4096, 4096]
model.layers.3.self_attn.k_proj.weight           -> blk.3.attn_k.weight                      | F16    | [4096, 4096]
model.layers.3.self_attn.v_proj.weight           -> blk.3.attn_v.weight                      | F16    | [4096, 4096]
model.layers.3.self_attn.o_proj.weight           -> blk.3.attn_output.weight                 | F16    | [4096, 4096]
skipping tensor blk.3.attn_rot_embd
model.layers.3.mlp.gate_proj.weight              -> blk.3.ffn_gate.weight                    | F16    | [11008, 4096]
model.layers.3.mlp.up_proj.weight                -> blk.3.ffn_up.weight                      | F16    | [11008, 4096]
model.layers.3.mlp.down_proj.weight              -> blk.3.ffn_down.weight                    | F16    | [4096, 11008]
model.layers.3.input_layernorm.weight            -> blk.3.attn_norm.weight                   | F16    | [4096]
model.layers.3.post_attention_layernorm.weight   -> blk.3.ffn_norm.weight                    | F16    | [4096]
model.norm.weight                                -> output_norm.weight                       | F16    | [4096]
lm_head.weight                                   -> output.weight                            | F16    | [55296, 4096]
Writing models/chinese-alpaca-2-1.3b/ggml-model-f16.gguf, format 1
Ignoring added_tokens.json since model matches vocab size without it.
gguf: This GGUF file is for Little Endian only
gguf: Setting special token type bos to 1
gguf: Setting special token type eos to 2
gguf: Setting special token type pad to 0
gguf: Setting add_bos_token to True
gguf: Setting add_eos_token to False
[ 1/39] Writing tensor token_embd.weight                      | size  55296 x   4096  | type F16  | T+   1
[ 2/39] Writing tensor blk.0.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   1
[ 3/39] Writing tensor blk.0.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   1
[ 4/39] Writing tensor blk.0.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   1
[ 5/39] Writing tensor blk.0.attn_output.weight               | size   4096 x   4096  | type F16  | T+   1
[ 6/39] Writing tensor blk.0.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   1
[ 7/39] Writing tensor blk.0.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   1
[ 8/39] Writing tensor blk.0.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   1
[ 9/39] Writing tensor blk.0.attn_norm.weight                 | size   4096           | type F32  | T+   2
[10/39] Writing tensor blk.0.ffn_norm.weight                  | size   4096           | type F32  | T+   2
[11/39] Writing tensor blk.1.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   2
[12/39] Writing tensor blk.1.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   2
[13/39] Writing tensor blk.1.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   2
[14/39] Writing tensor blk.1.attn_output.weight               | size   4096 x   4096  | type F16  | T+   2
[15/39] Writing tensor blk.1.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   2
[16/39] Writing tensor blk.1.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   2
[17/39] Writing tensor blk.1.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   2
[18/39] Writing tensor blk.1.attn_norm.weight                 | size   4096           | type F32  | T+   2
[19/39] Writing tensor blk.1.ffn_norm.weight                  | size   4096           | type F32  | T+   2
[20/39] Writing tensor blk.2.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   2
[21/39] Writing tensor blk.2.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   2
[22/39] Writing tensor blk.2.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   2
[23/39] Writing tensor blk.2.attn_output.weight               | size   4096 x   4096  | type F16  | T+   2
[24/39] Writing tensor blk.2.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   2
[25/39] Writing tensor blk.2.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   2
[26/39] Writing tensor blk.2.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   2
[27/39] Writing tensor blk.2.attn_norm.weight                 | size   4096           | type F32  | T+   2
[28/39] Writing tensor blk.2.ffn_norm.weight                  | size   4096           | type F32  | T+   2
[29/39] Writing tensor blk.3.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   2
[30/39] Writing tensor blk.3.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   2
[31/39] Writing tensor blk.3.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   2
[32/39] Writing tensor blk.3.attn_output.weight               | size   4096 x   4096  | type F16  | T+   2
[33/39] Writing tensor blk.3.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   3
[34/39] Writing tensor blk.3.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   3
[35/39] Writing tensor blk.3.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   4
[36/39] Writing tensor blk.3.attn_norm.weight                 | size   4096           | type F32  | T+   4
[37/39] Writing tensor blk.3.ffn_norm.weight                  | size   4096           | type F32  | T+   4
[38/39] Writing tensor output_norm.weight                     | size   4096           | type F32  | T+   4
[39/39] Writing tensor output.weight                          | size  55296 x   4096  | type F16  | T+   4
Wrote models/chinese-alpaca-2-1.3b/ggml-model-f16.gguf
(venv) yeqiang@yeqiang-MS-7B23:~/Downloads/ai/Chinese-LLaMA-Alpaca-2$ 

进一步对FP16模型进行4-bit量化

~/Downloads/ai/llama.cpp/quantize models/chinese-alpaca-2-1.3b/ggml-model-f16.gguf models/chinese-alpaca-2-1.3b/ggml-model-q4_0.bin q4_0

日志

(venv) yeqiang@yeqiang-MS-7B23:~/Downloads/ai/Chinese-LLaMA-Alpaca-2$ ~/Downloads/ai/llama.cpp/quantize models/chinese-alpaca-2-1.3b/ggml-model-f16.gguf models/chinese-alpaca-2-1.3b/ggml-model-q4_0.bin q4_0
main: build = 1 (5c99960)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: quantizing 'models/chinese-alpaca-2-1.3b/ggml-model-f16.gguf' to 'models/chinese-alpaca-2-1.3b/ggml-model-q4_0.bin' as Q4_0
llama_model_loader: loaded meta data with 21 key-value pairs and 39 tensors from models/chinese-alpaca-2-1.3b/ggml-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = LLaMA v2
llama_model_loader: - kv   2:                       llama.context_length u32              = 4096
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 4
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 1
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,55296]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,55296]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,55296]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  19:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  20:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - type  f32:    9 tensors
llama_model_loader: - type  f16:   30 tensors
llama_model_quantize_internal: meta size = 1233920 bytes
[   1/  39]                    token_embd.weight - [ 4096, 55296,     1,     1], type =    f16, quantizing to q4_0 .. size =   432.00 MiB ->   121.50 MiB | hist: 0.037 0.016 0.026 0.039 0.057 0.077 0.096 0.110 0.116 0.110 0.096 0.077 0.057 0.039 0.026 0.021 
[   2/  39]                  blk.0.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.027 0.040 0.056 0.074 0.092 0.109 0.121 0.110 0.093 0.076 0.058 0.042 0.027 0.021 
[   3/  39]                  blk.0.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.035 0.012 0.019 0.031 0.047 0.069 0.097 0.130 0.152 0.130 0.097 0.069 0.047 0.030 0.019 0.015 
[   4/  39]                  blk.0.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.037 0.054 0.075 0.097 0.115 0.123 0.115 0.097 0.075 0.054 0.037 0.024 0.020 
[   5/  39]             blk.0.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.035 0.012 0.020 0.032 0.049 0.072 0.099 0.126 0.138 0.126 0.100 0.072 0.049 0.032 0.020 0.017 
[   6/  39]                blk.0.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021 
[   7/  39]                  blk.0.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021 
[   8/  39]                blk.0.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021 
[   9/  39]               blk.0.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  10/  39]                blk.0.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  11/  39]                  blk.1.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.013 0.021 0.033 0.050 0.072 0.098 0.123 0.137 0.123 0.098 0.072 0.050 0.033 0.021 0.017 
[  12/  39]                  blk.1.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.013 0.021 0.033 0.050 0.073 0.098 0.123 0.136 0.123 0.099 0.073 0.051 0.033 0.021 0.017 
[  13/  39]                  blk.1.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.037 0.055 0.076 0.097 0.114 0.122 0.114 0.097 0.076 0.055 0.038 0.024 0.020 
[  14/  39]             blk.1.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.020 
[  15/  39]                blk.1.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  16/  39]                  blk.1.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021 
[  17/  39]                blk.1.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  18/  39]               blk.1.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  19/  39]                blk.1.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  20/  39]                  blk.2.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.037 0.054 0.075 0.097 0.116 0.125 0.116 0.097 0.075 0.054 0.037 0.024 0.020 
[  21/  39]                  blk.2.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.037 0.054 0.075 0.097 0.116 0.126 0.116 0.097 0.075 0.054 0.037 0.024 0.019 
[  22/  39]                  blk.2.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021 
[  23/  39]             blk.2.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  24/  39]                blk.2.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  25/  39]                  blk.2.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021 
[  26/  39]                blk.2.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021 
[  27/  39]               blk.2.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  28/  39]                blk.2.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  29/  39]                  blk.3.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.097 0.113 0.121 0.113 0.097 0.076 0.055 0.038 0.025 0.020 
[  30/  39]                  blk.3.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.097 0.114 0.121 0.114 0.097 0.076 0.055 0.038 0.024 0.020 
[  31/  39]                  blk.3.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021 
[  32/  39]             blk.3.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  33/  39]                blk.3.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  34/  39]                  blk.3.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021 
[  35/  39]                blk.3.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021 
[  36/  39]               blk.3.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  37/  39]                blk.3.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  38/  39]                   output_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  39/  39]                        output.weight - [ 4096, 55296,     1,     1], type =    f16, quantizing to q6_K .. size =   432.00 MiB ->   177.19 MiB
llama_model_quantize_internal: model size  =  2408.14 MB
llama_model_quantize_internal: quant size  =   733.08 MB
llama_model_quantize_internal: hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.097 0.076 0.056 0.038 0.025 0.021 

main: quantize time =  5131.57 ms
main:    total time =  5131.57 ms

启动chat.sh

mv scripts/llama-cpp/main .
bash scripts/llama-cpp/chat.sh models/chinese-alpaca-2-1.3b/ggml-model-q4_0.bin

启动成功了,日志

(venv) yeqiang@yeqiang-MS-7B23:~/Downloads/ai/Chinese-LLaMA-Alpaca-2$ bash scripts/llama-cpp/chat.sh models/chinese-alpaca-2-1.3b/ggml-model-q4_0.bin 
Log start
main: build = 1 (5c99960)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1705481300
llama_model_loader: loaded meta data with 22 key-value pairs and 39 tensors from models/chinese-alpaca-2-1.3b/ggml-model-q4_0.bin (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = LLaMA v2
llama_model_loader: - kv   2:                       llama.context_length u32              = 4096
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 4
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 2
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,55296]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,55296]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,55296]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  19:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  20:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  21:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:    9 tensors
llama_model_loader: - type q4_0:   29 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: mismatch in special tokens definition ( 889/55296 vs 259/55296 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 55296
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 4
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = Q4_0
llm_load_print_meta: model params     = 1.26 B
llm_load_print_meta: model size       = 733.08 MiB (4.87 BPW) 
llm_load_print_meta: general.name     = LLaMA v2
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.01 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/5 layers to GPU
llm_load_tensors:        CPU buffer size =   733.08 MiB
..............................
llama_new_context_with_model: n_ctx      = 4096
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model: graph splits (measure): 1
llama_new_context_with_model:        CPU compute buffer size =   288.00 MiB

system_info: n_threads = 8 / 6 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | 
main: interactive mode on.
Input prefix with BOS
Input prefix: ' [INST] '
Input suffix: ' [/INST]'
sampling: 
	repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
	top_k = 40, tfs_z = 1.000, top_p = 0.900, min_p = 0.050, typical_p = 1.000, temp = 0.500
	mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order: 
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp 
generate: n_ctx = 4096, n_batch = 512, n_predict = -1, n_keep = 0


== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.

 [INST] <<SYS>>
You are a helpful assistant. 你是一个乐于助人的助手。
<</SYS>>

 [/INST] 您好,有什么我可以帮助您的吗?
 [INST] 

这是完全基于CPU实现的?

编译llama.cpp项目没有启动cuda?

-----

试试web

参考资料

安装gradio

pip install gradio

报错

git下载模型,报错

手动把之前的模型拷贝进目录

启动gradio

安装xformers

(venv) yeqiang@yeqiang-MS-7B23:~/Downloads/ai/Chinese-LLaMA-Alpaca-2$ pip install xformers scipy

崩溃了。。。

github加速参考:

FAST-GitHub | Fast-GitHub

huggingface加速参考

hfl/chinese-alpaca-2-1.3b at main

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1392286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CCF认证+蓝桥杯习题训练

贪心 *上取整公式* *代码展示* #include <iostream> #include <cstring> #include <algorithm>using namespace std;const int N 1e5 10;typedef long long LL;int v[N] , a[N];int main() {int n , d;cin >> n >> d;for(int i 1 ; i < n…

oracle19C之grant语句

官网地址&#xff1a;GRANT 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. 授予 目的 使用GRANT 致赠款声明: 用户和角色的系统权限。 表18-1 列出系统权限(由操作的数据库对象组织)。 注意ANY 例如,系统特权,SEL…

Spring5深入浅出篇:Spring与工厂设计模式简介

Spring5深入浅出篇:Spring与工厂设计模式简介 什么是Spring Spring是⼀个轻量级的JavaEE解决⽅案&#xff0c;整合众多优秀的设计模式轻量级 1. 对于运⾏环境是没有额外要求的开源 tomcat resion jetty收费 weblogic websphere 2. 代码移植性⾼不需要实现额外接⼝JavaEE的解…

java多线程传参数

package com.myThread;public class AdminThread extends Thread{private String name;public void AdminThread(String name){this.name name;}Overridepublic void run() {//线程开始之后执行的代码for (int i 0; i < 100; i) {System.out.print(getName()"线程…

Qt/QML编程之路:slider(34)

滑条slider&#xff0c;有时也成为进度条progressbar&#xff0c;在GUI界面中也是经常用到的。 import QtQuick 2.9 import QtQuick.Controls 2.0 import QtQuick.Layouts 1.2ApplicationWindow {id:rootvisible: truewidth: 1920height: 720//title: qsTr("Hello World&q…

matlab快速入门(读取数据并绘制散点图和拉格朗日插值

目录 1.读取excel&#xff1a;2.注释快捷键&#xff1a;3.数组/矩阵索引&#xff1a;4.绘制散点图&#xff1a;5.拉格朗日插值&#xff1a;5.1分割出非空和空的x和y两组数据&#xff1a;5.2插值&#xff1a;5.3画图&#xff1a; 小结&#xff1a; 1.读取excel&#xff1a; [nu…

《动手学深度学习》学习笔记 第9章 现代循环神经网络

本系列为《动手学深度学习》学习笔记 书籍链接&#xff1a;动手学深度学习 笔记是从第四章开始&#xff0c;前面三章为基础知识&#xff0c;有需要的可以自己去看看 关于本系列笔记&#xff1a; 书里为了让读者更好的理解&#xff0c;有大篇幅的描述性的文字&#xff0c;内容很…

Unity之触发器

目录 &#x1f4d5;一、触发器概念 &#x1f4d5;二、碰撞与触发的区别 &#x1f4d5;三、触发器小实例 一、触发器概念 第一次玩侠盗猎车手是在小学&#xff0c;从那以后就开启了我的五星好市民之路。 下面是小编在小破站截的图&#xff0c;这是罪恶都市最开始的地方&a…

数据结构奇妙旅程之二叉树初阶

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好&#xff0c;我是xiaoxie.希望你看完之后,有不足之处请多多谅解&#xff0c;让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …

深度好文:MySQL体系结构

MySQL采用的是客户/服务器体系结构&#xff0c;实际是有两个程序&#xff0c;一个是MySQL服务器程序&#xff0c;指的是mysqld程序&#xff0c;运行在存放数据库的机器上&#xff0c;负责在网络上监听并处理来自客户的服务请求&#xff0c;根据这些请求去访问数据库的内容&…

在IntelliJ IDEA中集成SSM项目

SSM项目&#xff1a;springMVC为控制器、spring 为事务层、 MyBatis 负责持久 首先看下集成后项目结构&#xff1a; 1、打开IntelliJ IDEA&#xff0c;点击 "File" -> "New" -> "Project"。 点击Finish&#xff0c;此时我们就已经创建了一…

Git怎么将文件夹上传至github,全过程

小白建议参考github文件上传全流程-新手入门系列&#xff08;超详细&#xff01;&#xff01;&#xff01;&#xff09; 中间可能会有报错 $ ssh -T gitgithub.com ssh: connect to host github.com port 22: Connection timed out 这时&#xff0c;参考&#xff0c;如何解决&a…

REVIT二次开发修改轴网

REVIT二次开发修改轴网 步骤1 步骤2 步骤3 功能实现在这 using System; using System.Collections.Generic; using System.Linq; using

【UE 材质】简单的纹理失真、溶解效果

目录 1. 失真效果 2. 溶解效果 3. 失真溶解 我们一开始有这样一个纹理 1. 失真效果 其中纹理节点“DistortTexture”的纹理为引擎自带的纹理“T_Noise01”&#xff0c;我们可以通过控制参数“失真度”来控制纹理的失真程度 2. 溶解效果 3. 失真溶解

学习JavaEE的日子 day13 封装 static private this 类加载机制

Day13 1. private – 私有化 理解&#xff1a;private是访问修饰符的一种&#xff0c;访问修饰符规定了访问权限. 作用&#xff1a; ​ 1.private修饰属性&#xff1a;该属性只能在类的内部使用 ​ 2.private修饰方法&#xff1a;该方法只能在类的内部使用 应用场景&#xff1…

【算法】算法(模拟、指针等)解决字符串类题目(C++)

文章目录 1. 前言2. 解决 字符串类算法题14.最长公共前缀5.最长回文子串67.二进制求和43.字符串相乘 1. 前言 字符串题目有很多种&#xff0c;这里筛选几个考察模拟、双指针等的题目&#xff0c;并用相关算法解决。 2. 解决 字符串类算法题 14.最长公共前缀 思路 题意分析&…

【Mybatis】说一下 mybatis 的一级缓存和二级缓存

​ &#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;Mybatis ⛳️ 功不唐捐&#xff0c;玉汝于成 ​ 目录 前言 正文 一级缓存&#xff08;Local Cache&#xff09;&#xff1a; 范围&#xff1a; 生命周期&#xff1a; 默认开启&…

数据科学与大数据导论期末复习笔记(大数据)

来自于深圳技术大学&#xff0c;此笔记涵盖了期末老师画的重点知识&#xff0c;分享给大家。 等深分箱和等宽分箱的区别&#xff1a;等宽分箱基于数据的范围来划分箱子&#xff0c;每个箱子的宽度相等。等深分箱基于数据的观测值数量来划分箱子&#xff0c;每个箱子包含相同数量…

tcpdump常用参数以及wireshark密文解密

tcpdump常用参数以及wireshark密文解密 文章目录 一、tcpdump命令和常用参数二、在wireshark中协议解析 tcpdump常用参数 一、tcpdump命令和常用参数 tcpdump常用命令&#xff1a;tcpdump -i eth0 src host 11.6.224.1 and udp port 161 -s 0 -w 161.pcap &#xff08;161为sn…

(一)ROS的安装

&#xff08;一&#xff09;安装ubuntu18.04 系统&#xff08;虚拟机或者是物理机&#xff0c;在此不再介绍&#xff09; &#xff08;二&#xff09;添加ROS镜像源 apt 列表中没有ROS源&#xff0c;所以要手动添加 sudo sh -c . /etc/lsb-release && echo "deb…