OpenCV-Python(43):姿势估计

news2025/2/24 2:56:01

目标

  • 学习了解calib3D 模块
  • 学习在图像中创建3D效果

calib3D模块

        OpenCV-Python的calib3D模块是OpenCV库中的一个重要模块,用于摄像头标定和三维重建等计算机视觉任务。该模块提供了一些函数和类,用于摄像头标定、立体视觉和三维重建等方面的操作。

下面是一些calib3D模块常用的函数和类的介绍:

1.findChessboardCorners():用于在一张图片中查找棋盘格角点的函数。可以用于摄像头标定。

2.calibrateCamera():用于摄像头标定的函数。根据一系列已知世界坐标和对应的图像坐标,计算出相机内参数和畸变系数。

3.undistort():用于去除图像畸变的函数。根据相机内参数和畸变系数,对图像进行去畸变处理。

4.stereoCalibrate():用于立体标定的函数。根据一系列已知的立体对应点对,计算出两个相机的内参数、外参数和立体校正参数。

5.stereoRectify():用于立体校正的函数。根据相机的内参数、外参数和立体校正参数,对两个输入图像进行立体校正,以便进行立体匹配。

6.stereoSGBM():用于立体匹配的函数。根据两个校正后的图像,进行视差计算并生成视差图。

 摄像头标定步骤

        使用calib3D模块进行摄像头标定的基本步骤如下:

  1. 准备一系列棋盘格图像,保证棋盘格在各个位置、角度和距离上都有充分的变化。
  2. 对每张图像,使用findChessboardCorners()函数查找棋盘格角点,并将角点的图像坐标和对应的世界坐标存储起来。
  3. 使用calibrateCamera()函数对所有的角点进行摄像头标定,得到相机的内参数和畸变系数。
  4. 使用undistort()函数对图像进行去畸变处理,得到校正后的图像。

立体视觉步骤

使用calib3D模块进行立体视觉的基本步骤如下:

  1. 准备一系列立体对应点对,包括左右图像的图像坐标和世界坐标。
  2. 使用stereoCalibrate()函数对立体对应点对进行立体标定,得到两个相机的内参数、外参数和立体校正参数。
  3. 使用stereoRectify()函数对输入图像进行立体校正,得到校正后的图像。
  4. 使用stereoSGBM()函数对校正后的图像进行立体匹配,得到视差图。

姿势估计基础

        在上一节的摄像机标定中,我们已经得到了摄像机矩阵,畸变系数等。有了这些信息我们就可以估计图像中图案的姿势,比如目标对象是如何摆放,如何旋转等。对一个平面来说,我们可以假 Z=0,这样问题就转化成摄像机在空间中是如何摆放(然后拍摄)的。所以,如果我们知道对象在空间中的姿势,我们就可以在图像中绘制一些2D 的线条来产生3D 的效果。我们来看一下怎么做吧。

        我们的问题是,在棋盘的第一个角点绘制3D 坐标(X,Y,Z轴)。X轴为蓝色,Y 轴为绿色,Z 轴为红色。在视觉效果上来看,Z 轴应该是垂直与棋盘平面的。

        首先我们要加载前面结果中摄像机矩阵和畸变系数。

import cv2
import numpy as np
import glob

# Load previously saved data
with np.load('B.npz') as X:
    mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')]

        现在创建一个函数:draw,它的参数有棋盘上的角点(使用cv2.findChessboardCorners() 得到)和要绘制的3D 坐标轴上的点。 

def draw(img, corners, imgpts):
    corner = tuple(corners[0].ravel())
    img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
    return img

        和前面一样,我们要设置终止条件,对象点(棋盘上的3D角点)和坐标轴点。3D 空间中的坐标轴点是为了绘制坐标轴。我们绘制的坐标轴的长度为3。所以X 轴从(0,0,0)绘绘制到(3,0,0),Y 轴也是。Z 轴从(0,0,0)绘制到(0,0,-3)。负值表示它是朝着(垂直于)摄像机方向。 

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)

        很通常一样我们需要加载图像。搜寻7x6 的格子,如果发现,我们就把它优化到亚像素级。然后使用函数:cv2.solvePnPRansac() 来计算旋转和变换。当我们有了变换矩阵之后,我们就可以利用它们将这些坐标轴点映射到图像平面中去。简单来说,我们在图像平面上找到了与3D 空间中的点(3,0,0),(0,3,0),(0,0,3) 相对应的点。然后我们就可以使用我们的函数draw() 从图像上的第一个角点开始绘制连接这些点的直线了。搞定!!!

for fname in glob.glob('left*.jpg'):
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
    if ret == True:
        corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        # Find the rotation and translation vectors.
        rvecs, tvecs, inliers = cv2.solvePnPRansac(objp, corners2, mtx, dist)
        # project 3D points to image plane
        imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist)
        img = draw(img,corners2,imgpts)
        cv2.imshow('img',img)
        k = cv2.waitKey(0) & 0xff
        if k == 's':
            cv2.imwrite(fname[:6]+'.png', img)
cv2.destroyAllWindows()

        结果如下,看到了没,每条坐标轴的长度都是3 个格子的长度。 

渲染一个立方体 

         如果你想绘制一个立方体的话要对draw() 函数进行如下修改,修改后的draw() 函数:

def draw(img, corners, imgpts):
    imgpts = np.int32(imgpts).reshape(-1,2)
    # draw ground floor in green
    img = cv2.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
    # draw pillars in blue color
    for i,j in zip(range(4),range(4,8)):
        img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
    # draw top layer in red color
    img = cv2.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
return img

 修改后的坐标轴点。它们是3D 空间中的一个立方体的8 个角点:

axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0],
[0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ])

结果如下:

        如果你对计算机图形学感兴趣的话,为了增加图像的真实性,你可以使用OpenGL 来渲染更复杂的图形 。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1391670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用Lambda表达式实现vector中pair/结构体的排序

众所周知&#xff0c;对于vector<pair<int, int> >若直接使用sort排序&#xff0c;会默认按照pair的第一个关键字从小到大进行排序&#xff1a; #include <bits/stdc.h>using namespace std;int main() {vector<pair<int, int> > p;p.push_back…

Asp .Net Core 系列:集成 Ocelot+Consul实现网关、服务注册、服务发现

什么是Ocelot? Ocelot是一个开源的ASP.NET Core微服务网关&#xff0c;它提供了API网关所需的所有功能&#xff0c;如路由、认证、限流、监控等。 Ocelot是一个简单、灵活且功能强大的API网关&#xff0c;它可以与现有的服务集成&#xff0c;并帮助您保护、监控和扩展您的微…

编写RedisUtil来操作Redis

目录 ​编辑 Redis中文网 第一步&#xff1a;建springboot项目 第二步&#xff1a;导依赖 第三步&#xff1a;启动类 第四步&#xff1a;yml 第五步&#xff1a;Redis配置类 第六步&#xff1a;测试类 第七步&#xff1a;编写工具类 RedisUtil 第八步&#xff1a;编写…

C++核心编程——文件操作

本专栏记录C学习过程包括C基础以及数据结构和算法&#xff0c;其中第一部分计划时间一个月&#xff0c;主要跟着黑马视频教程&#xff0c;学习路线如下&#xff0c;不定时更新&#xff0c;欢迎关注。 当前章节处于&#xff1a; ---------第1阶段-C基础入门 ---------第2阶段实战…

基于python集成学习算法XGBoost农业数据可视化分析预测系统

文章目录 基于python集成学习算法XGBoost农业数据可视化分析预测系统一、项目简介二、开发环境三、项目技术四、功能结构五、功能实现模型构建封装类用于网格调参训练模型系统可视化数据请求接口模型评分 0.5*mse 六、系统实现七、总结 基于python集成学习算法XGBoost农业数据可…

国内小白最靠谱的充值chatgpt的方法是什么?

在AI越来越火得时代&#xff0c;大家都想尝试以下ChatGPT与ChatGPTPlus有什么不同&#xff0c;那么我们如何使用靠谱得方式来充值ChatGPT呢&#xff1f; 充值注意事项&#xff1a; 1、一个干净得环境 2、Fomepay得虚拟卡&#xff0c;5347/5561/都可以 3、登录ChatGPT 按图片…

LLM:Training Compute-Optimal Large Language Models

论文&#xff1a;https://arxiv.org/pdf/2203.15556.pdf 发表&#xff1a;2022 前文回顾&#xff1a; OpenAI在2020年提出《Scaling Laws for Neural Language Models》&#xff1a;Scaling Laws(缩放法则&#xff09;也一直影响了后续大模型的训练。其给出的结论是最佳计算效…

工具推荐 |Devv.ai — 最懂程序员的新一代 AI 搜索引擎

介绍 伴随 GPT 的出现&#xff0c;我们可以看到越来越多的 AI 产品&#xff0c;其中也不乏针对程序员做的代码生成工具。 今天介绍的这款产品是一款针对中文开发者的 AI 搜索引擎&#xff0c;Devv.ai 使用 Devv.ai 的使用非常简单&#xff0c;就是传统的搜索场景&#xff…

高级分布式系统-第10讲 分布式控制系统

高级分布式系统汇总&#xff1a;高级分布式系统目录汇总-CSDN博客 自动化是关于一切人造系统自动、智能、自主、高效和安全运行的科学与技术 计算机控制技术是实现自动化的主要方法和手段 分布式控制技术是伴随着机器大工业生产而诞生的特殊计算机控制技术 计算机控制系统 …

rust获取本地ip地址的方法

大家好&#xff0c;我是get_local_info作者带剑书生&#xff0c;这里用一篇文章讲解get_local_info的使用。 get_local_info是什么&#xff1f; get_local_info是一个获取linux系统信息的rust三方库&#xff0c;并提供一些常用功能&#xff0c;目前版本0.2.4。详细介绍地址&a…

MSSQL-识别扩展extended event(扩展事件)中的时间单位

经常使用sqlserver extended event(扩展事件)&#xff0c;但是总是忘记扩展事件使用的时间单位&#xff0c;不确定它们是 秒、毫秒、还是微秒&#xff1f; 以下下代码能够从 相关DMV中提取description字段内容来识别时间单位&#xff1a; SELECT [p].[name] [package_name],[o…

企业网站建站源码系统:Thinkphp5内核企业网站建站模板源码 带完整的安装代码包以及搭建教程

随着互联网的快速发展&#xff0c;企业对于网站的需求日益增强。为了满足这一市场需求&#xff0c;小编给大家分享一款基于Thinkphp5内核的企业网站建站源码系统。该系统旨在为企业提供一套功能强大、易于使用的网站建设解决方案&#xff0c;帮助企业快速搭建自己的官方网站&am…

探索数据的奥秘:一份深入浅出的数据分析入门指南

数据分析 书籍推荐 入门读物 深入浅出数据分析啤酒与尿布数据之美数学之美 数据分析 Scipy and NumpyPython for Data AnalysisBad Data Handbook集体智慧编程Machine Learning in Action机器学习实战Building Machine Learning Systems with Python数据挖掘导论Machine L…

LLM:Scaling Laws for Neural Language Models (上)

论文&#xff1a;https://arxiv.org/pdf/2001.08361.pdf 发表&#xff1a;2020 摘要1&#xff1a;损失与模型大小、数据集大小以及训练所用计算量成比例&#xff0c;其中一些趋势跨越了七个量级以上。 2&#xff1a;网络宽度或深度等其他架构细节在很大范围内影响较小。3&…

两道有挑战的问题(算法村第九关黄金挑战)

将有序数组转换为二叉搜索树 108. 将有序数组转换为二叉搜索树 - 力扣&#xff08;LeetCode&#xff09; 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个…

rust跟我学五:是否安装双系统

图为RUST吉祥物 大家好,我是get_local_info作者带剑书生,这里用一篇文章讲解get_local_info是怎么得到检测双系统的。 首先,先要了解get_local_info是什么? get_local_info是一个获取linux系统信息的rust三方库,并提供一些常用功能,目前版本0.2.4。详细介绍地址:[我的Ru…

【JVM】常用命令

一、前言 Java虚拟机&#xff08;JVM&#xff09;是Java程序运行的基础设施&#xff0c;它负责将Java字节码转换为本地机器代码并执行。在开发过程中&#xff0c;我们经常需要使用一些命令来监控和管理JVM的性能和状态。本文将详细介绍6个常用的JVM命令&#xff1a;jps、jstat…

C语言——编译和链接

&#xff08;图片由AI生成&#xff09; 0.前言 C语言是最受欢迎的编程语言之一&#xff0c;以其接近硬件的能力和高效性而闻名。理解C语言的编译和链接过程对于深入了解其运行原理至关重要。本文将详细介绍C语言的翻译环境和运行环境&#xff0c;重点关注编译和链接的各个阶段…

含并行连结的网络(GoogLeNet)

目录 1.GoogLeNet 2.代码 1.GoogLeNet inception不改变高宽&#xff0c;只改变通道数。GoogLeNet也大量使用1*1卷积&#xff0c;把它当作全连接用。 V3耗内存比较多&#xff0c;计算比较慢&#xff0c;但是精度比较准确。 2.代码 import torch from torch import nn from t…

未来的NAS:连接您的数字生活

未来的NAS&#xff1a;连接您的数字生活 引言 网络附加存储&#xff08;Network Attached Storage&#xff0c;简称NAS&#xff09;是一种通过网络连接的存储设备&#xff0c;用于集中存储和共享数据。传统的NAS设备通常包含一个或多个硬盘驱动器&#xff0c;可以通过局域网连…