ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模

news2024/11/18 9:48:06

  2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是显现了OpenAI旨在构建AI生态的野心。因此,为了帮助近红外光谱分析领域的广大科研人员更加熟练地掌握ChatGPT4.0在近红外光谱数据分析、定性/定量分析模型代码自动生成等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,特举办“ChatGPT4助力近红外光谱机器学习与深度学习建模及应用” ,旨在帮助学员掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解ChatGPT4.0的最新功能,以及经典人工智能方法在近红外光谱数据分析与定性/定量建模时需要掌握的经验及技巧。

靳老师 18031211455 微信

第一章、ChatGPT4入门基础

1、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验(注册与充值、购买方法)

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store简介

7、案例演示与实操练习

图片

第二章、ChatGPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

11、实操练习

图片

第三章、ChatGPT4助力信息检索与总结分析

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

5、案例演示与实操练习

图片

第四章、ChatGPT4助力论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

6、案例演示与实操练习

图片

第五章、ChatGPT4助力Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

7、实操练习

图片

第六章、ChatGPT4助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板讲解

7、实操练习

图片

第七章、ChatGPT4助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板讲解

7、案例演示:近红外光谱回归拟合建模

图片

第八章、ChatGPT4助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分?BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板讲解

7、案例演示:1)近红外光谱回归拟合建模;2)近红外光谱分类识别建模

图片

第九章、ChatGPT4助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板讲解

5、案例演示:近红外光谱分类识别建模

图片

第十章、ChatGPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM简介

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板讲解

10、案例演示:近红外光谱回归拟合建模

图片

第十一章、ChatGPT4助力遗传算法近红外光谱分析

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板讲解

5、案例演示:基于二进制遗传算法的近红外光谱波长筛选

图片

图片

第十二章、ChatGPT4助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板讲解

6、案例演示:1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

图片

第十三章、ChatGPT4助力Pytorch入门基础

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

图片

第十四章、ChatGPT4助力卷积神经网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板讲解

7、案例演示:

(1)CNN预训练模型实现物体识别;

(2)利用卷积神经网络抽取抽象特征;

(3)自定义卷积神经网络拓扑结构;

(4)基于卷积神经网络的近红外光谱模型建立

图片

第十五章、ChatGPT4助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

第十六章、ChatGPT4助力自编码器近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板讲解

5、案例演示:1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

图片

第十七章、ChatGPT4助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)简介

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板讲解

4、案例演示:基于U-Net的多光谱图像语义分割

第十八章、ChatGPT4助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理讲解

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板讲解

6、案例演示

第十九章、复习与答疑讨论

1、课程复习与总结、资料分享(图书、在线课程资源、源代码等)

2、科研与创新方法总结(如何利用Google Scholar、Sci-Hub、ResearchGate等工具查阅文献资料、配套的数据和代码?如何更好地撰写论文的Discussion部分?)

3、答疑与讨论(大家提前把问题整理好)

图片

关注科研技术平台获取更多详情 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1390155.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

快速知识付费平台搭建,一分钟搭建你的专属知识服务平台

产品服务 线上线下课程传播 线上线下活动管理 项目撮合交易 找商机找合作 一对一线下交流 企业文化宣传 企业产品销售 更多服务 实时行业资讯 动态学习交流 分销代理推广 独立知识店铺 覆盖全行业 个人IP打造 独立小程序 私域运营解决方案 公域引流 营销转化 …

Unity使用Protobuf

1.下载Protobuf ProtoBuf 2.打开它并且编译 如果有报错下载相应的.net版本即可 这里默认是6.0.100 由于我本机是8.0.100所以我改了这个文件 3.编译后的文件复制到Unity Assets/Plugins下 4.写个测试的proto文件 5.然后使用protoc生成 这里实现了一个简单的bat批量生成 Protos C…

电子招投标全程在线应用安全

电子招投标全程在线应用安全解决方案 电子招投标全程在线应用是指招标人、招标代理机构、投标人、评标专家、监管机构利用公共互联网开展的招标、投标、开标、评标、定标、监管的活动过程。 由于该过程全程在线运行在风险因素较多的公共互联网上,存在电子招投标中…

python爬虫-代理ip理解

目录 1、为什么使用代理IP 2、代理IP 3、IP池 4、代理分类: 5、python中使用代理IP 6、如何找可以使用的代理IP 7、拿到IP后,测试IP的有效性 8、扩展理解正向代理和反向代理 1、为什么使用代理IP 就是为了防止ip被封禁,提高爬虫的效…

隧道应用4-内网穿透EW的简单使用

与netsh端口映射内网类似,也是通过跳板机实现 EW官网地址:http://rootkiter.com/EarthWorm EW 是一套便携式的网络穿透工具,具有 SOCKS v5服务架设和端口转发两大核心功能,可在复杂网络环境下完成网络穿透。 注: 考虑…

sshpass 命令exit code 6 问题解决方法

近期在使用sshpass做自动化交互的脚本,结果运行命令后会返回错误码6,命令如下: sshpass -p 123456 ssh test192.168.1.100 "uname -a" 经搜索资料发现,错误码6指的是Host public key is unknown,也就是说要访问的地址是…

【Java基础(高级篇)】响应式编程

文章目录 1. 概述2. stream 流式编程3. Reactive-Stream4. 响应式编程5. Reactor5.1 Mono和Flux5.2 subscribe()5.3 多线程5.4 常用操作API示例5.5 错误处理5.6 Sinks 工具类 1. 概述 本章将从响应式编程的开始,从 stream 开始逐步递进,如对流式编程或响…

使用 GitHub 远程仓库

使用 GitHub 远程仓库 GitHub 是最大的 Git 版本库托管商,是成千上万的开发者和项目能够合作进行的中心。 大部分 Git 版本库都托管在 GitHub,很多开源项目使用 GitHub 实现 Git 托管、问题追踪、代码审查以及其它事情。本篇文章主要带大家上手 GitHub …

element-ui表单验证时undefined (reading ‘validate‘)

我搜索了一下,大部分都是说不仔细造成的,但是我一一对照了 1、el-form中我定义了ref,并且ref前面也是没有加冒号的 2、el-form中也绑定了rules,并且rules前面加了冒号 2、el-form-item我是加了prop的,并且和rules中…

程序员客栈发布《2023程序员自由职业报告》

自2020年以来,自由职业者的生态系统迅速繁荣,从而塑造了一个全新的职业发展模式。2023年,经济形势严峻,但灵活就业形式越来越流行,包括自由职业、远程办公和平台经济等。越来越多的人选择从事自由职业或者利用互联网平…

costmap_2d包介绍

文章目录 一. costmap_2d包介绍二. Costmap包的执行入口-- move_base中调用三. Costmap包的初始化以及维护3.1 Costmap2DROS类3.1.1 构造函数 Costmap2DROS::Costmap2DROS3.1.2 地图更新线程 Costmap2DROS::mapUpdateLoop3.1.3 地图更新 Costmap2DROS::updateMap()3.1.4 激活各…

【HuggingFace Transformer库学习笔记】基础组件学习:Datasets

基础组件——Datasets datasets基本使用 导入包 from datasets import *加载数据 datasets load_dataset("madao33/new-title-chinese") datasetsDatasetDict({train: Dataset({features: [title, content],num_rows: 5850})validation: Dataset({features: [titl…

高级定时器

本节主要介绍以下内容: 定时器简介 高级定时器功能框图讲解 一、定时器简介 定时器功能 :定时、输出比较、输入捕获、断路输入 定时器分类 :基本定时器、通用定时器、高级定时器 定时器资源 :F103有2个高级定时器、4个通…

C#编程-实现委托

实现委托 委托是可以存储对方法的引用的对象。在C#中,委托允许您动态地改变类中方法的引用。 考虑咖啡售货机的示例,它配置不同口味的咖啡,例如卡布奇诺咖啡和黑咖啡。在选择所需口味的咖啡时,售货机决定混合各种成分,例如奶粉、咖啡粉、热水、卡布奇诺咖啡粉。所有的材…

构建一个最新版本 Maven 项目

文章目录 构建一个最新版本 Maven 项目1. 所用各种软件的版本2. 踩过的坑3. 构建项目过程4. 项目打包方式 构建一个最新版本 Maven 项目 截止 2024 年 1 月 13 日,Apache 官网上 Maven 的最新安全版本为 3.9.6,下载、安装及配置方法见之前的博客&#x…

TIMESAT提取物候信息操作流程

TIMESAT提取物候信息操作流程 软件环境:Matlab R2014aTIMESAT3.2 数据介绍:MODIS A3或Q1的NVI(NDVI)均测试过这个流程,可行(大拇指)。 TIMESAT输入n年数据,提取n-1年的物候参数。通…

jmeter--4.参数化的方式

目录 1. 用户定义的变量 2. 用户参数 3. 函数助手 3.1 time获取当前时间 3.2 Random随机数 3.3 随机字符串函数 3.4 字符串变更为大写 4. CSV数据文件设置 5. 接口关联--正则和json等提取 1. 用户定义的变量 线程组->添加->配置元件->用户定义的变量 引用方…

【设计模式-06】Observer观察者模式

简要说明 事件处理模型 场景示例:小朋友睡醒了哭,饿! 一、v1版本(披着面向对象的外衣的面向过程) /*** description: 观察者模式-v1版本(披着面向对象的外衣的面向过程)* author: flygo* time: 2022/7/18 16:57*/ public class ObserverMain…

MySQL 从零开始:05 MySQL 数据类型

文章目录 1、数值类型1.1 整形数值1.2 浮点型数值1.3 布尔值 2、日期和时间类型3、字符串类型3.1 CHAR 和 VARCHAR3.2 BINARY 和 VARBINARY3.3 BLOB 和 TEXT3.4 ENUM 类型3.5 SET 类型 4、空间数据类型5、JSON 数据类型5、JSON 数据类型 前面的讲解中已经接触到了表的创建&…

这款软件轻松解决你图片水印问题

随着数字时代的到来,图片已经成为我们生活中不可或缺的一部分。然而,很多时候,我们会遇到带有水印的图片,这不仅影响了图片的视觉效果,还可能遮挡了重要的内容。这时,一款专业的去水印工具就显得尤为重要。…