深入理解 go reflect - 要不要传指针

news2025/1/18 8:57:46

在我们看一些使用反射的代码的时候,会发现,reflect.ValueOfreflect.TypeOf 的参数有些地方使用的是指针参数,有些地方又不是指针参数,
但是好像这两者在使用上没什么区别,比如下面这样:

var a = 1
v1 := reflect.ValueOf(a)
v2 := reflect.ValueOf(&a)

fmt.Println(v1.Int())        // 1
fmt.Println(v2.Elem().Int()) // 1

它们的区别貌似只是需不需要使用 Elem() 方法,但这个跟我们是否传递指针给 reflect.ValueOf 其实关系不大,
相信没有人为了使用一下 Elem() 方法,就去传递指针给 reflect.ValueOf 吧。

那我们什么时候应该传递指针参数呢?

什么时候传递指针?

要回答这个问题,我们可以思考一下以下列出的几点内容:

  1. 是否要修改变量的值,要修改就要用指针
  2. 结构体类型:是否要修改结构体里的字段,要修改就要用指针
  3. 结构体类型:是否要调用指针接收值方法,要调用就要用指针
  4. 对于 chanmapslice 类型,我们传递值和传递指针都可以修改其内容
  5. 对于非 interface 类型,传递给 TypeOfValueOf 的时候都会转换为 interface 类型,如果本身就是 interface 类型,则不需转换。
  6. 指针类型不可修改,但是可以修改指针指向的值。(v := reflect.ValueOf(&a)v.CanSet()falsev.Elem().CanSet()true
  7. 字符串:我们可以对字符串进行替换,但不能修改字符串的某一个字符

大概总结下来,就是:如果我们想修改变量的内容,就传递指针,否则就传递值。对于某些复合类型如果其内部包含了底层数据的指针,
也是可以通过传值来修改其底层数据的,这些类型有 chanmapslice
又或者如果我们想修改结构体类型里面的指针类型字段,传递结构体的拷贝也能实现。

1. 通过传递指针修改变量的值

对于一些基础类型的变量,如果我们想修改其内容,就要传递指针。这是因为在 go 里面参数传递都是值传递,如果我们不传指针,
那么在函数内部拿到的只是参数的拷贝,对其进行修改,不会影响到外部的变量(事实上在对这种反射值进行修改的时候会直接 panic)。

传值无法修改变量本身

x := 1
v := reflect.ValueOf(x)

在这个例子中,v 中保存的是 x 的拷贝,对这份拷贝在反射的层面上做修改其实是没有实际意义的,因为对拷贝进行修改并不会影响到 x 本身。
我们在通过反射来修改变量的时候,我们的预期行为往往是修改变量本身。鉴于实际的使用场景,go 的反射系统已经帮我们做了限制了,
在我们对拷贝类型的反射对象进行修改的时候,会直接 panic

在这里插入图片描述

传指针可以修改变量

x := 1
v := reflect.ValueOf(&x).Elem()

在这个例子中,我们传递了 x 的指针到 reflect.ValueOf 中,这样一来,v 指向的就是 x 本身了。
在这种情况下,我们对 v 的修改就会影响到 x 本身。

在这里插入图片描述

2. 通过传递指针修改结构体的字段

对于结构体类型,如果我们想修改其字段的值,也是要传递指针的。这是因为结构体类型的字段是值类型,如果我们不传递指针,
reflect.ValueOf 拿到的也是一份拷贝,对其进行修改并不会影响到结构体本身。当然,这种情况下,我们修改它的时候也会 panic

type person struct {
	Name string
	Age  int
}

p := person{
    Name: "foo",
    Age:  30,
}
// v 本质上是指向 p 的指针
v := reflect.ValueOf(&p)

// v.CanSet() 为 false,v 是指针,指针本身是不能修改的
// v.Elem() 是 p 本身,是可以修改的

fmt.Println(v.Elem().FieldByName("Name").CanSet()) // true
fmt.Println(v.Elem().FieldByName("Age").CanSet())  // true

在这里插入图片描述

3. 结构体:获取指针接收值方法

对于结构体而言,如果我们想通过反射来调用指针接收者方法,那么我们需要传递指针。

在开始讲解这一点之前,需要就以下内容达成共识:

type person struct {
}

func (p person) M1() {
}

func (p *person) M2() {
}

func TestPerson(t *testing.T) {
	p := person{}
	v1 := reflect.ValueOf(p)
	v2 := reflect.ValueOf(&p)

	assert.Equal(t, 1, v1.NumMethod())
	assert.Equal(t, 2, v2.NumMethod())

	// v1 和 v2 都有 M1 方法
	assert.True(t, v1.MethodByName("M1").IsValid())
	assert.True(t, v2.MethodByName("M1").IsValid())

	// v1 没有 M2 方法
	// v2 有 M2 方法
	assert.False(t, v1.MethodByName("M2").IsValid())
	assert.True(t, v2.MethodByName("M2").IsValid())
}

在上面的代码中,p 只有一个方法 M1,而 &p 有两个方法 M1M2
但是在实际使用中,我们使用 p 来调用 M2 也是可以的
p 之所以能调用 M2 是因为编译器帮我们做了一些处理,将 p 转换成了 &p,然后调用 M2

在这里插入图片描述

但是在反射的时候,我们是无法做到这一点的,这个需要特别注意。如果我们想通过反射来调用指针接收者的方法,就需要传递指针。

4. 变量本身包含指向数据的指针

最好不要通过值的反射对象来修改值的数据,就算有些类型可以实现这种功能。

对于 chanmapslice 这三种类型,我们可以通过 reflect.ValueOf 来获取它们的值,
但是这个值本身包含了指向数据的指针,因此我们依然可以通过反射系统修改其数据。但是,我们最好不这么用,从规范的角度,这是一种错误的操作。

通过值反射对象修改 chan、map 和 slice

在这里插入图片描述

在 go 中,chanmapslice 这几种数据结构中,存储数据都是通过一个 unsafe.Pointer 类型的变量来指向实际存储数据的内存。
这是因为,这几种类型能够存储的元素个数都是不确定的,都需要根据我们指定的大小和存储的元素类型来进行内存分配。

正因如此,我们复制 chanmapslice 的时候,虽然值被复制了一遍,但是存储数据的指针也被复制了,
这样我们依然可以通过拷贝的数据指针来修改其数据,如下面的例子:

func TestPointer1(t *testing.T) {
	// 数组需要传递引用才能修改其元素
	arr := [3]int{1, 2, 3}
	v1 := reflect.ValueOf(&arr)
	v1.Elem().Index(1).SetInt(100)
	assert.Equal(t, 100, arr[1])

	// chan 传值也可以修改其元素
	ch := make(chan int, 1)
	v2 := reflect.ValueOf(ch)
	v2.Send(reflect.ValueOf(10))
	assert.Equal(t, 10, <-ch)

	// map 传值也可以修改其元素
	m := make(map[int]int)
	v3 := reflect.ValueOf(m)
	v3.SetMapIndex(reflect.ValueOf(1), reflect.ValueOf(10))
	assert.Equal(t, 10, m[1])

	// slice 传值也可以修改其元素
	s := []int{1, 2, 3}
	v4 := reflect.ValueOf(s)
	v4.Index(1).SetInt(20)
	assert.Equal(t, 20, s[1])
}

slice 反射对象扩容的影响

但是,我们需要注意的是,对于 mapslice 类型,在其分配的内存容纳不下新的元素的时候,会进行扩容
扩容之后,保存数据字段的指针就指向了一片新的内存了
这意味着什么呢?这意味着,我们通过 mapslice 的值创建的反射值对象中拿到的那份数据指针已经跟旧的 mapslice 指向的内存不一样了。

在这里插入图片描述

说明:在上图中,我们在反射对象中往 slice 追加元素后,导致反射对象 slicearray 指针指向了一片新的内存区域了,
这个时候我们再对反射对象进行修改的时候,不会影响到原 slice。这也就是我们不能通过 slicemap 的拷贝的反射对象来修改 slicemap 的原因。

示例代码:

func TestPointer1(t *testing.T) {
	s := []int{1, 2, 3}
	v4 := reflect.ValueOf(s)
	v4.Index(1).SetInt(20)
	assert.Equal(t, 20, s[1])

	// 这里发生了扩容
	// v5 的 array 跟 s 的 array 指向的是不同的内存区域了。
	v5 := reflect.Append(v4, reflect.ValueOf(4))
	fmt.Println(s) // [1 20 3]
	fmt.Println(v5.Interface().([]int)) // [1 20 3 4]

	// 这里修改 v5 的时候影响不到 s 了
	v5.Index(1).SetInt(30)
	fmt.Println(s) // [1 20 3]
	fmt.Println(v5.Interface().([]int)) // [1 30 3 4]
}

说明:在上面的代码中,v5 实际上是 v4 扩容后的切片,底层的 array 指针指向的是跟 s 不一样的 array 了,
因此在我们修改 v5 的时候,会发现原来的 s 并没有发生改变。

虽然通过值反射对象可以修改 slice 的数据,但是如果通过反射对象 append 元素到 slice 的反射对象的时候,
可能会触发 slice 扩容,这个时候再修改反射对象的时候,就影响不了原来的 slice 了。

slice 容量够的话是不是就可以正常追加元素了?

只能说,能,也不能。我们看看下面这个例子:

func TestPointer000(t *testing.T) {
	s1 := make([]int, 3, 6)
	s1[0] = 1
	s1[1] = 2
	s1[2] = 3
	fmt.Println(s1) // [1 2 3]

	v6 := reflect.ValueOf(s1)
	v7 := reflect.Append(v6, reflect.ValueOf(4))
	// 虽然 s1 的容量足够大,但是 s1 还是看不到追加的元素
	fmt.Println(s1)                     // [1 2 3]
	fmt.Println(v7.Interface().([]int)) // [1 2 3 4]

	// s1 和 s2 底层数组还是同一个
	// array1 是 s1 底层数组的内存地址
	array1 := (*(*reflect.SliceHeader)(unsafe.Pointer(&s1))).Data
	s2 := v7.Interface().([]int)
    // array2 是 s2 底层数组的内存地址
	array2 := (*(*reflect.SliceHeader)(unsafe.Pointer(&s2))).Data
	assert.Equal(t, array1, array2)

	// 这是因为 s1 的长度并没有发生改变,
	// 所以 s1 看不到追加的那个元素
	fmt.Println(len(s1), cap(s1)) // 3 6
	fmt.Println(len(s2), cap(s2)) // 4 6
}

在这个例子中,我们给 slice 分配了足够大的容量,但是我们通过反射对象来追加元素的时候,
虽然数据被正常追加到了 s1 底层数组,但是由于在反射对象以外的 s1len 并没有发生改变,
因此 s1 还是看不到反射对象追加的元素。所以上面说可以正常追加元素

但是,外部由于 len 没有发生改变,因此外部看不到反射对象追加的元素,所以上面也说不能正常追加元素

因此,虽然理论上修改的是同一片内存,我们依然不能通过传值的方式来通过反射对象往 slice 中追加元素。
但是修改 [0, len(s)) 范围内的元素在反射对象外部是可以看到的。

map 也不能通过值反射对象来修改其元素。

slice 类似,通过 map 的值反射对象来追加元素的时候,同样可能导致扩容,
扩容之后,保存数据的内存区域会发生改变。

但是,从另一个角度看,如果我们只是修改其元素的话,是可以正常修改的。

chan 没有追加

chanslicemap 有个不一样的地方,它的长度是我们创建 chan 的时候就已经固定的了,
因此,不存在扩容导致指向内存区域发生改变的问题。

因此,对于 chan 类型的元素,我们传 ch 或者 &chreflect.ValueOf 都可以实现修改 ch

结构体字段包含指针的情况

如果结构体里面包含了指针字段,我们也只是想通过反射对象来修改这个指针字段的话,
那么我们也还是可以通过传值给 reflect.ValueOf 来创建反射对象来修改这个指针字段:

type person struct {
	Name *string
}

func TestPointerPerson(t *testing.T) {
	name := "foo"
	p := person{Name: &name}

	v := reflect.ValueOf(p)
	fmt.Println(v.Field(0).Elem().CanAddr())
	fmt.Println(v.Field(0).Elem().CanSet())

	name1 := "bar"
	v.Field(0).Elem().Set(reflect.ValueOf(name1))
	// p 的 Name 字段已经被成功修改
	fmt.Println(*p.Name)
}

在这个例子中,我们虽然使用了 p 而不是 &p 来创建反射对象,
但是我们依然可以修改 Name 字段,因为反射对象拿到了 Name 的指针的拷贝,
通过这个拷贝是可以定位到 pName 字段本身指向的内存的。

但是我们依然是不能修改 p 中的其他字段。

5. interface 类型处理

对于 interface 类型的元素,我们可以将以下两种操作看作是等价的:

// v1 跟 v2 都拿到了 a 的拷贝
var a = 1
v1 := reflect.ValueOf(a)

var b interface{} = a
v2 := reflect.ValueOf(b)

我们可以通过下面的断言来证明:

assert.Equal(t, v1.Kind(), v2.Kind())
assert.Equal(t, v1.CanAddr(), v2.CanAddr())
assert.Equal(t, v1.CanSet(), v2.CanSet())
assert.Equal(t, v1.Interface(), v2.Interface())

当然,对于指针类型也是一样的:

// v1 跟 v2 都拿到了 a 的指针
var a = 1
v1 := reflect.ValueOf(&a)

var b interface{} = &a
v2 := reflect.ValueOf(b)

同样的,我们可以通过下面的断言来证明:

assert.Equal(t, v1.Kind(), v2.Kind())
assert.Equal(t, v1.Elem().Kind(), v2.Elem().Kind())
assert.Equal(t, v1.Elem().CanAddr(), v2.Elem().CanAddr())
assert.Equal(t, v1.Elem().Addr(), v2.Elem().Addr())
assert.Equal(t, v1.Interface(), v2.Interface())
assert.Equal(t, v1.Elem().Interface(), v2.Elem().Interface())

interface 底层类型是值

interface 类型的底层类型是值的时候,我们将其传给 reflect.ValueOf 跟直接传值是一样的。
是没有办法修改 interface 底层数据的值的(除了指针类型字段,因为反射对象也拿到了指针字段的地址):

type person struct {
    Name *string
}

func TestInterface1(t *testing.T) {
	name := "foo"
	p := person{Name: &name}

	// v 拿到的是 p 的拷贝
    // 下面两行等价于 v := reflect.ValueOf(p)
	var i interface{} = p
	v := reflect.ValueOf(i)
	assert.False(t, v.CanAddr())
	assert.Equal(t, reflect.Struct, v.Kind())
	assert.True(t, v.Field(0).Elem().CanAddr())
}

在上面这个例子中 v := reflect.ValueOf(i) 其实等价于 v := reflect.ValueOf(p)
因为在我们调用 reflect.ValueOf(p) 的时候,go 语言本身会帮我们将 p 转换为 interface{} 类型。
在我们赋值给 i 的时候,go 语言也会帮我们将 p 转换为 interface{} 类型。
这样再调用 reflect.ValueOf 的时候就不需要再做转换了。

在这里插入图片描述

interface 底层类型是指针

传递底层数据是指针类型的 interfacereflect.ValueOf 的时候,我们可以修改 interface 底层指针指向的值,
效果等同于直接传递指针给 reflect.ValueOf

func TestInterface(t *testing.T) {
	var a = 1
	v1 := reflect.ValueOf(&a)

	var b interface{} = &a
	v2 := reflect.ValueOf(b)

	// v1 和 v2 本质上都接收了一个 interface 参数,
	// 这个 interface 参数的数据部分都是 &a

	v1.Elem().SetInt(10)
	assert.Equal(t, 10, a)

	// 通过 v1 修改 a 的值,v2 也能看到
	assert.Equal(t, 10, v2.Elem().Interface())

	// 同样的,通过 v2 修改 a 的值,v1 也能看到
	v2.Elem().SetInt(20)
	assert.Equal(t, 20, a)
	assert.Equal(t, 20, v1.Elem().Interface())
}

不要再对接口类型取地址

能不能通过反射 Value 对象来修改变量只取决于,能不能根据反射对象拿到最初变量的内存地址。
如果拿到的只是原始值的拷贝,不管我们怎么做都无法修改原始值。

对于初学者另外一个令人困惑的地方可能是下面这样的代码:

func TestInterface(t *testing.T) {
	var a = 1
	var i interface{} = a
	v1 := reflect.ValueOf(&a)
	v2 := reflect.ValueOf(&i)

	// v1 和 v2 的类型都是 reflect.Ptr
	assert.Equal(t, reflect.Ptr, v1.Kind())
	assert.Equal(t, reflect.Ptr, v2.Kind())

	// 但是两者的 Elem() 类型不同,
	// v1 的 Elem() 是 reflect.Int,
	// v2 的 Elem() 是 reflect.Interface
	assert.Equal(t, reflect.Int, v1.Elem().Kind())
	assert.Equal(t, reflect.Interface, v2.Elem().Kind())
}

困惑的源头在于,reflect.ValueOf() 这个函数的参数是 interface{} 类型的,
这意味着我们可以传递任意类型的值给它,包括指针类型的值。

正因如此,如果我们不懂得 reflect 包的工作原理的话,
就会传错变量到 reflect.ValueOf() 函数中,导致程序出错。

对于上面例子的 v2,它是一个指向 interface{} 类型的指针的反射对象,它也能找到最初的变量 a

但是能不能修改 a,还是取决于 a 是否是可寻址的。也就是最初传递给 i 的值是不是一个指针类型。

assert.Equal(t, "<*interface {} Value>", v2.String())
assert.Equal(t, "<interface {} Value>", v2.Elem().String())
assert.Equal(t, "<int Value>", v2.Elem().Elem().String())

在上面的例子中,我们传递给 i 的是 a 的值,而不是 a 的指针,所以 i 是不可寻址的,也就是说 v2 是不可寻址的。

在这里插入图片描述

上图说明:

  • i 是接口类型,它的数据部分是 a 的拷贝,它的类型部分是 int 类型。
  • &i 是指向接口的指针,它指向了上图的 eface
  • v2 是指向 eface 的指针的反射对象。
  • 最终,我们通过 v2 找到 i 这个接口,然后通过 i 找到 a 这个变量的拷贝

所以,绕了一大圈,我们最终还是修改不了 a 的值。到最后我们只拿到了 a 的拷贝。

6. 指针类型反射对象不可修改其指向地址

其实这一点上面有些地方也有涉及到,但是这里再强调一下。一个例子如下:

func TestPointer(t *testing.T) {
	var a = 1
	var b = &a
	v := reflect.ValueOf(b)

	assert.False(t, v.CanAddr())
	assert.False(t, v.CanSet())

	assert.True(t, v.Elem().CanAddr())
	assert.True(t, v.Elem().CanSet())
}

在这里插入图片描述

说明:

  • v 是指向 &a 的指针的反射对象。
  • 通过这个反射对象的 Elem() 方法,我们可以找到原始的变量 a
  • 反射对象本身不能修改,但是它的 Elem() 方法返回的反射对象可以修改。

对于指针类型的反射对象,其本身不能修改,但是它的 Elem() 方法返回的反射对象可以修改。

7. 反射也不能修改字符串中的字符

这是因为,go 中的字符串本身是不可变的,我们无法像在 C 语言中那样修改其中某一个字符。
其实不止是 go,其实很多编程语言的字符串都是不可变的,比如 Java 中的 String 类型。

在 go 中,字符串是用一个结构体来表示的,大概长下面这个样子:

type StringHeader struct {
	Data uintptr
	Len  int
}
  • Data 是指向字符串的指针。
  • Len 是字符串的长度(单位为字节)。

在 go 中 str[1] = 'a' 这样的操作是不允许的,因为字符串是不可变的。

相同的字符串只有一个实例

假设我们定义了两个相同的字符串,如下:

s1 := "hello"
s2 := "hello"

这两个字符串的值是相同的,但是它们的地址是不同的。那既然如此,为什么我们还是不能修改它的其中某一个字符呢?
这是因为,虽然 s1s2 的地址不一样,但是它们实际保存 hello 这个字符串的地址是一样的:

v1 := (*reflect.StringHeader)(unsafe.Pointer(&s1))
v2 := (*reflect.StringHeader)(unsafe.Pointer(&s2))

// 两个字符串实例保存字符串的内存地址是一样的
assert.Equal(t, v1.Data, v2.Data)

两个字符串内存表示如下:

在这里插入图片描述

所以,我们可以看到,s1s2 实际上是指向同一个字符串的指针,所以我们无法修改其中某一个字符。
因为如果允许这种行为存在的话,我们对其中一个字符串实例修改,也会影响到另外一个字符串实例。

字符串本身可以替换

虽然我们不能修改字符串中的某一个字符,但是我们可以通过反射对象把整个字符串替换掉:

func TestStirng(t *testing.T) {
	s := "hello"

	v := reflect.ValueOf(&s)
	fmt.Println(v.Elem().CanAddr())
	fmt.Println(v.Elem().CanSet())

	v.Elem().SetString("world")
	fmt.Println(s) // world
}

这里实际上是把 s 中保存字符串的地址替换成了指向 world 这个字符串的地址,而不是将 hello 指向的内存修改成 world

func TestStirng(t *testing.T) {
	s := "hello"

	oldAddr := (*reflect.StringHeader)(unsafe.Pointer(&s)).Data

	v := reflect.ValueOf(&s)
	v.Elem().SetString("world")

	newAddr := (*reflect.StringHeader)(unsafe.Pointer(&s)).Data

	// 修改之后,实际保存字符串的内存地址发生了改变
	assert.NotEqual(t, oldAddr, newAddr)
}

这可以用下图表示:

在这里插入图片描述

总结

  • 如果我们需要通过反射对象来修改变量的值,那么我们必须得有办法拿到变量实际存储的内存地址。这种情况下,很多时候都是通过传递指针给 reflect.ValueOf() 方法来实现的。
  • 但是对于 chanmapslice 或者其他类似的数据结构,它们通过指针来引用实际存储数据的内存,这种数据结构是通过通过传值给 reflect.ValueOf() 方法来实现修改其中的元素的。因为这些数据结构的数据部分可以通过指针的拷贝来修改。
  • 但是 mapslice 有可能会扩容,如果通过反射对象来追加元素,可能导致追加失败。这是因为,通过反射对象追加元素的时候,如果扩容了,那么原来的内存地址就会失效,这样我们其实就修改不了原来的 mapslice 了。
  • 同样的,结构体传值来创建反射对象的时候,如果其中有指针类型的字段,那么我们也可以通过指针来修改其中的元素。但是其他字段也还是修改不了的。
  • 如果我们创建反射对象的参数是 interface 类型,那么能不能修改元素的变量还是取决于我们这个 interface 类型变量的数据部分是值还是指针。如果 interface 变量中存储的是值,那么我们就不能修改其中的元素了。如果 interface 变量中存储的是指针,就可以修改。
  • 我们无法修改字符串的某一个字符,通过反射也不能,因为字符串本身是不可变的。不同的 stirng 类型的变量,如果它们的值是一样的,那么它们会共享实际存储字符串的内存。
  • 但是我们可以直接用一个新的字符串替代旧的字符串。

但其实说了那么多,简单来说只有一点,就是我们只能通过反射对象来修改指针类型的变量。如果拿不到实际存储数据的指针,那么我们就无法通过反射对象来修改其中的元素了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1384963.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

你好2024,OpenStreetMap 20 周岁

2004年&#xff0c;OpenStreetMap在英国诞生。2024年&#xff0c;OpenStreetMap 满 20 周岁&#xff0c;其愿景是创建一个免费的、可编辑的世界地图。当时&#xff0c;地图数据的获取往往受到限制或价格昂贵1。 经过20年的发展&#xff0c;该数据集合成为了最为全面的街道级别开…

压缩编码之离散余弦变换(DCT)之不同块大小对图像质量和压缩效果的影响的python实现

原理 离散余弦变换&#xff08;DCT&#xff09;是一种在图像压缩中广泛使用的技术&#xff0c;特别是在JPEG图像格式中。 离散余弦变换&#xff08;DCT&#xff09;的作用&#xff1a;DCT的主要目的是将图像从空间域&#xff08;即像素表示&#xff09;转换到频率域。在频率域…

【MATLAB随笔】GUI编程(未完结)

文章目录 一、创建图窗1.1 figure 函数详解1.11 窗口标识1.12 窗口外观1.13 位置和大小 二、xxx 一、创建图窗 跟很多GUI编程一样的&#xff0c;先创建一个基本的图窗&#xff0c;然后再添加按钮、文章、标签&#xff0c;绑定函数等等&#xff0c;比如python的tkinter。 MATL…

ES数据聚合

1.数据聚合 聚合&#xff08;aggregations&#xff09;可以让我们极其方便的实现对数据的统计、分析、运算。例如&#xff1a; 什么品牌的手机最受欢迎&#xff1f; 这些手机的平均价格、最高价格、最低价格&#xff1f; 这些手机每月的销售情况如何&#xff1f; 实现这些…

数组笔试题详解

文章目录 数组笔试题解析总结: 数组笔试题解析 我们可以通过做题来加深我们对数组及相关知识的理解,下面的笔试题解答正确的关键在于下面这点,一定要牢记: 数组名是首元素地址,两种情况除外: 1.sizeof(数组名) , 这是这是计算整个数组的大小,单位是字节; 2.&数组名 , 得出…

任务6:启动Hadoop集群并测试

任务描述 知识点&#xff1a; 掌握Hadoop集群的启动 重 点&#xff1a; Hadoop集群的格式化流程Hadoop集群的启动流程 内 容&#xff1a; 格式化Hadoop集群启动测试Hadoop集群 任务指导 启动Hadoop集群并测试&#xff0c;过程如下&#xff1a; 初始化HDFS&#xff1…

C#编程-使用事件

使用事件 事件是一个动作或发生的事情,例如:鼠标点击、按键、鼠标移动或系统产生的通知。应用程序可以在事件发生的时候做出响应。通知的一个示例是中断。事件是对象发生的消息以表示事件的发生。事件是进程内通信的有效方法。它们对对象时有用的,因为它们标识了单个状态改…

Redis-redis.conf配置文件中的RDB与AOF持久化方式的详解与区别

RDB&#xff08;Redis Database&#xff09; RDB是Redis的默认持久化方式&#xff0c;它将内存中的数据以二进制格式写入磁盘&#xff0c;形成一个快照。RDB持久化有以下几个重要的配置选项&#xff1a; save&#xff1a;指定了保存RDB的策略&#xff0c;默认的配置是每900秒&…

解锁 JavaScript 数组的强大功能:常用方法和属性详解(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

SpringFramework实战指南(一)

SpringFramework实战指南&#xff08;一&#xff09; 一、技术体系结构1.1 总体技术体系1.2 框架概念和理解 一、技术体系结构 1.1 总体技术体系 单一架构 一个项目&#xff0c;一个工程&#xff0c;导出为一个war包&#xff0c;在一个Tomcat上运行。也叫all in one。 单一架…

Redis常见命令、数据类型

我们可以通过Redis的中文文档&#xff1a;Redis命令中心&#xff08;Redis commands&#xff09; -- Redis中国用户组&#xff08;CRUG&#xff09;&#xff0c;来学习各种命令。 也可以通过菜鸟教程官网来学习&#xff1a;Redis 键(key) | 菜鸟教程 一、Redis数据结构介绍 Red…

UML-顺序图

提示&#xff1a;用例图从参与者的角度出发&#xff0c;描述了系统的需求&#xff08;用例图&#xff09;&#xff1b;静态图定义系统中的类和对象间的静态关系&#xff08;类图、对象图和包图&#xff09;&#xff1b;状态机模型描述系统元素的行为和状态变化流程&#xff08;…

快速入门Java NIO(New I/O)的网络通信框架--Netty

Netty 入门 了解netty前需要对nio有一定认识,该笔记基础来自bilinbili黑马,在此基础上自己学习的笔记,添加了一些自己的理解 了解java 非阻塞io编程 1. 概述 1.1 Netty 是什么&#xff1f; Netty is an asynchronous event-driven network application framework for rapid …

关于AMC8模拟考试延长到1月19日14点,以及常见的几个新问题

相信过去的周末两天&#xff0c;很多参加今年AMC8美国数学思维竞赛活动的孩子们都参加了AMC8模拟考试。昨天有家长问六分成长&#xff0c;周末两天因故没能参加要不要紧&#xff1f;如果还想参加怎么办&#xff1f; 不用担心&#xff01;官方已经把AMC8模拟考试的时间延长到1月…

【Redis】AOF 源码

在上篇, 我们已经从使用 / 机制 / AOF 过程中涉及的辅助功能等方面简单了解了 Redis AOF。 这篇将从源码的形式, 进行深入的了解。 1 Redis 整个 AOF 主要功能 Redis 的 AOF 功能概括起来就 2 个功能 AOF 同步: 将客户端发送的变更命令, 保存到 AOF 文件中AOF 重写: 随着 Red…

Python 潮流周刊#35:Python JIT 编译器和 Numpy2 即将推出

△△请给“Python猫”加星标 &#xff0c;以免错过文章推送 你好&#xff0c;我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容&#xff0c;大部分为英文。本周刊开源&#xff0c;欢迎投稿[1]。另有电报频道[2]作为副刊&#xff0c;补充发布更加丰富的资讯&#xff0c;…

【Java SE语法篇】9.抽象类和接口

&#x1f4da;博客主页&#xff1a;爱敲代码的小杨. ✨专栏&#xff1a;《Java SE语法》 ❤️感谢大家点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;&#xff0c;您的三连就是我持续更新的动力❤️ 文章目录 1. 抽象类1.1 抽象类的概念1.2 抽象类的语法1.3 抽象…

VScode设置自动添加自定义注释及修改字体

首先安装snippet mac可以键入commanp&#xff0c;输出> 选择自己所需的需要自动添加的文件类型配置文件 安装自己的需要修改 "Print to console": {"prefix": "xx", // 自己键入内容"body": [ // 注释信息"// xxx …

【NI国产替代】USB‑7846 Kintex-7 160T FPGA,500 kS/s多功能可重配置I/O设备

Kintex-7 160T FPGA&#xff0c;500 kS/s多功能可重配置I/O设备 USB‑7846具有用户可编程FPGA&#xff0c;可用于高性能板载处理和对I/O信号进行直接控制&#xff0c;以确保系统定时和同步的完全灵活性。 您可以使用LabVIEW FPGA模块自定义这些设备&#xff0c;开发需要精确定时…

canvas创建图像数据,并在画布上展示

查看专栏目录 canvas示例教程100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…