机器学习~从入门到精通(三)梯度下降法

news2024/11/20 16:31:30

一、梯度下降法

#   梯度下降不是一种算法,是一种最优化方法
#   上节课讲解的梯度下降的案例  是一个简单的一元二次方程
#    最简单的线性回归:只有一个特征的线性回归,有两个theta
#    

二、在多元线性回归中使用梯度下降求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、### R squared error

在这里插入图片描述

使用真实数据来进行梯度下降的过程

在这里插入图片描述
在这里插入图片描述

#  如果特征数多,样本数少,梯度下降法占优
#  如果特征数少,样本数多,梯度下降法的效率会比较低
import numpy as np


def r2_score(y_true, y_predict):
    return 1 - ((np.sum((y_true - y_predict) ** 2) / len(y_true)) / np.var(y_true))


class MyLinearGression:
    def __init__(self):
        self._theta = None  # theta参数
        self.coef_ = None  # 系数
        self.interception_ = None  # 截距

    def fit_gd(self, X_train, y, eta=0.01, n_iters=1e3, epsilon=1e-8):  # 使用梯度下降的方式来训练数据
        def j(theta, X_b, y):
            try:
                return np.sum((y - X_b.dot(theta)) ** 2) / len(X_b)
            except:
                return float('inf')

        def dj(theta, X_b, y):
            # res = np.empty(len(theta))
            # res[0] = np.sum((X_b.dot(theta) - y))
            # for i in range(1, len(theta)):
            #     res[i] = (X_b.dot(theta) - y).dot(X_b[:, i])
            # return res * 2 / len(X_b)
            return X_b.T.dot(X_b.dot(theta) - y)

        def gradient_descent(X_b, y, eta, initial_theta, n_iters=1e3, epsilon=1e-8):
            theta = initial_theta
            i_iter = 1
            while i_iter < n_iters:
                last_theta = theta
                theta = theta - eta * dj(theta, X_b, y)
                if abs(j(theta, X_b, y) - j(last_theta, X_b, y)) < epsilon:
                    break
                i_iter += 1
            return theta

        # eta = 0.01
        X_b = np.hstack([np.ones(len(X_train)).reshape(-1, 1), X_train])
        initial_theta = np.zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b, y, eta, initial_theta)
        self.interception_ = self._theta[0]
        self.coef_ = self._theta[1:]
        return self

    def __repr__(self):
        return "MyLinearGression()"

    def score(self, X_predict, y_test):
        y_predict = self.predict(X_predict)
        return r2_score(y_test, y_predict)

    def predict(self, X_predict):
        X_b = np.hstack([np.ones(len(X_predict)).reshape(-1, 1), X_predict])
        return X_b.dot(self._theta)

四、总结

knn算法 线性回归 数据的预处理(标准化) 模型好坏的校验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五 梯度下降法

# 梯度下降不是一个机器学习算法,既不是再做监督学习,也不是在做非监督学习,是一种基于搜索的最优化方法
# 作用:最小化一个损失函数
# 梯度上升法:最大化一个效用函数
#  eta叫做学习率,learning rate
#  eta的取值影响我们求得最优解的速度
#  eta如果取值过小,收敛太慢
#  eta取值过大,可能甚至得不到最优解
#  eta他是梯度下降法的一个超参数

#  并不是所有的函数都有唯一的极值点

#  线性回归的损失函数具有唯一的最优解
#  gradient inscent 
import numpy as np
import matplotlib.pyplot as plt
plt_x = np.linspace(-1,6,141)
plt_y = (plt_x-2.5)**2-1
plt.plot(plt_x,plt_y)
plt.show()

在这里插入图片描述

def dj(theta):  
    return 2*(theta-2.5) #  传入theta,求theta点对应的导数

def j(theta):
    return (theta-2.5)**2-1  #  传入theta,获得目标函数的对应值
eta = 0.1
theta =0.0
epsilon = 1e-8
while True:
    gradient = dj(theta)
    last_theta = theta
    theta = theta-gradient*eta 
    if np.abs(j(theta)-j(last_theta))<epsilon:
        break
        
print(theta)
print(dj(theta))
print(j(theta))
eta = 0.1
theta =0.0
epsilon = 1e-8
theta_history = [theta]
while True:
    gradient = dj(theta)
    last_theta = theta
    theta = theta-gradient*eta 
    theta_history.append(theta)
    if np.abs(j(theta)-j(last_theta))<epsilon:
        break
        
print(theta)
print(dj(theta))
print(j(theta))

len(theta_history)

plt.plot(plt_x,plt_y)
plt.plot(theta_history,[(i-2.5)**2-1 for i in theta_history],color='r',marker='+')
plt.show()
def gradient_descent(eta,initial_theta,n_iters=1e3,epsilon = 1e-8):
    theta = initial_theta
    theta_history = [initial_theta]
    i_iter = 1
    def dj(theta):  
        try:
            return 2*(theta-2.5) #  传入theta,求theta点对应的导数
        except:
            return float('inf')
    def j(theta):
        return (theta-2.5)**2-1  #  传入theta,获得目标函数的对应值
    while i_iter<=n_iters:
        gradient = dj(theta)
        last_theta = theta
        theta = theta-gradient*eta 
        theta_history.append(theta)
        if np.abs(j(theta)-j(last_theta))<epsilon:
            break
        i_iter+=1
    return theta_history

def plot_gradient(theta_history):
    plt.plot(plt_x,plt_y)
    plt.plot(theta_history,[(i-2.5)**2-1 for i in theta_history],color='r',marker='+')
    plt.show()
eta = 0.1
theta =0.0
plot_gradient(gradient_descent(eta,theta))
eta = 0.01  #  eta越小,迭代次数越多,耗时越久
theta =0.0
theta_history = gradient_descent(eta,theta)
plot_gradient(theta_history)
len(theta_history)
eta = 0.8   #  说明eta的取值不是特别准确,也可以得到正确的结果
theta =0.0
plot_gradient(gradient_descent(eta,theta))
eta = 1.1  #  说明eta取值太大
theta =0.0
plot_gradient(gradient_descent(eta,theta))

六、sklearn中使用梯度下降法

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1384144.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习~从入门到精通(二)线性回归算法和多元线性回归

为什么要做数据归一化 一、数据归一化&#xff1a; 1.最值归一化 2.均值方差归一化import numpy as npX np.random.randint(1,100,size100) X X.reshape(-1,2) X.shape X np.array(X,dtypefloat) X[:,0] (X[:,0]-np.min(X[:,0]))/(np.max(X[:,0])-np.min(X[:,0])) X[:,1]…

Mr_HJ / form-generator项目学习-增加自定义的超融组件(一)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/n…

【python playwright 安装及验证】

python playwright pip install playwright pip install playwright -i http://mirrors.aliyun.com/pypi/simple/ playwright codegen -o script.py -b chromium --ignore-https-errors --viewport-size “2560,1440” --proxy-server “http://100.8.64.8:60497” https://w…

基于Docker的Nginx的安装与配置

基于Docker的Nginx的安装与配置 1 为Nginx创建一个容器1.1 学习docker run1.2 通过docker run为Nginx创建并启动一个容器 2 配置Nginx2.1 学习docker的bind mount技术2.2 在Nginx容器中找到想修改的文件所在的目录2.2.1 认识nginx.conf文件2.2.2 访问Nginx服务&#xff0c;默认…

光猫(无限路由器)插入可移动硬盘搭建简易版的NAS

1.场景分析 最近查询到了许多有关NAS的资料&#xff0c;用来替代百度云盘等确实有很多优势&#xff0c;尤其是具有不限速&#xff08;速度看自己配置&#xff09;、私密性好、一次投入后续只需要电费即可等优势。鉴于手上没有可以用的资源-cpu、机箱、内存等&#xff0c;查询到…

嵌入式软件面试之程序在存储器中的分布

Hi, 大家好&#xff0c;今天阿目分享的是一个嵌入式软件面试的常见问题&#xff0c;内存分布或者说程序在内存中的布局&#xff0c;我们写的程序是按照怎么的准则放在内存中的&#xff1f; 一般有操作系统的嵌入式设备&#xff0c;都会有一个Bootloader, 它负责在上电后初始化…

ubuntu18.04 TensorRT 部署 yolov5-7.0推理

文章目录 1、环境配置2、推理部分2.1、检测2.2、分类2.3、分割2.4、INT8 量化 1、环境配置 链接: TensorRT cuda环境安装 2、推理部分 下载yolov5对应版本的包 https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5 2.1、检测 1、源码模型下载 git clone -b v7.0 …

算法通关村第十六关—滑动窗口与堆结合(黄金)

滑动窗口与堆结合 堆与滑动窗口问题的结合 LeetCode239给你一个整数数组nums,有一个大小为k的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的k个数字。滑动窗口每次只向右移动一位&#xff0c;返回滑动窗口中的最大值。  对于最大值、K个最大这种场…

Multi-View-Information-Bottleneck

encoder p θ ( z 1 ∣ v 1 ) _θ(z_1|v_1) θ​(z1​∣v1​)&#xff0c;D S K L _{SKL} SKL​ represents the symmetrized KL divergence. I ˆ ξ ( z 1 ; z 2 ) \^I_ξ(z_1; z_2) Iˆξ​(z1​;z2​) refers to the sample-based parametric mutual information estimatio…

原子类-入门介绍和分类说明、基本类型原子类

Atomic翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学 反应中是不可分割的。在我们这里Atomic是指一个操作是不可中断的。即使是在多个线程一起执 行的时候,一个操作一旦开始,就不会被其他线程干扰。 基本类型原子类 AtomicInteger:整…

Modelsim10.4安装

简介&#xff08;了解&#xff0c;可跳过&#xff09; modelsim是Mentor公司开发的优秀的HDL语言仿真软件。 它能提供友好的仿真环境&#xff0c;采用单内核支持VHDL和Verilog混合仿真的仿真器。它采用直接优化的编译技术、Tcl/Tk技术和单一内核仿真技术&#xff0c;编译仿真速…

P5461 赦免战俘题解

题目 现有2n2n(n≤10) 名作弊者站成一个正方形方阵等候kkksc03的发落。kkksc03决定赦免一些作弊者。他将正方形矩阵均分为4个更小的正方形矩阵&#xff0c;每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免&#xff0c;剩下3个小矩阵中&…

【存储过程和存储函数】MySQL

存储过程和存储函数 一、实验目的 掌握通过SQL语句CREATE PROCEDURE创建存储过程的方法。 掌握使用SQL语句CALL调用存储过程的方法。 掌握使用SQL语句ALTER PROCEDURE修改存储过程的方法。 掌握使用SQL语句DROP PROCEDURE删除存储过程的方法。 掌握使用CREATE FUNCTION创建…

信息检索速通知识点

仅仅是我自己能想到的对这个分类的一个记忆。欢迎指正 首先&#xff0c;最重要的一点&#xff0c;什么是信息检索&#xff1f; 信息检索是从大规模无规则的数据中&#xff08;主要是文档&#xff09;中查询用户所需要的信息的过程。 然后&#xff0c;信息检索有哪几种索引呢&am…

机器人行业概况(2)

上篇已经介绍过关于机器人的定义以及分类&#xff0c;下面来看看机器人产业市场规模。 二、国内机器人产业市场规模 中国机器人产业在国家智能制造相关政策的引导下蓬勃发展。在新冠肺炎疫情防控期间&#xff0c;消毒、配送、测温、巡检等各类机器人的“火线上岗”&#xff0…

对写文章的想法

一些思考 思考初心现在错觉想说的话 最后 思考 在CSDN里面写文章已经快半年了啊&#xff0c;虽然更得不多&#xff0c;但每一篇都花费很多时间&#xff0c;写的时候能帮自己查漏补缺&#xff0c;这边找找资料补充一下&#xff0c;都能去拓展自己的知识面&#xff0c;让自己的文…

JDK8终将走进历史,Oracle宣布JDK继续免费

目录 前言Oracle 已免费提供 JDKOracle Java SE 产品最新动态 为什么业界中用JDK8那么多Java SE 8 公共更新结束总结 前言 今天想到上个月无意中听闻到的一句话&#xff1a;JDK8之后收费了&#xff0c;所以大家都用JDK8。当时只觉得这个话说得不对&#xff0c;但因为和说话的人…

基于Java SSM框架实现学生成绩管理系统项目【项目源码+论文说明】

基于java的SSM框架实现学生成绩管理系统演示 摘要 学生成绩是高校人才培养计划的重要组成部分&#xff0c;是实现人才培养目标、培养学生科研能力与创新思维、检验学生综合素质与实践能力的重要手段与综合性实践教学环节。而学生所在学院多采用半手工管理学生成绩的方式&#…

代码随想录——回溯

系列文章目录 代码随想录——回溯 文章目录 系列文章目录概述组合组合组合III电话号码的字母组合组合总和组合总和II 分割分割回文串** 复原ip地址 子集子集子集II 概述 回溯的本质就是递归遍历&#xff0c;但在完成某一条路之后会撤回到上一层&#xff0c;然后重新选择另一条…