大数据仓库开发规范示例

news2025/2/26 0:37:44

大数据仓库开发规范示例

  • 一、前提概要
  • 二、数仓分层原则及定义
    • 2.1 数仓分层原则
    • 2.2 数仓分层定义
  • 三、数仓公共开发规范
    • 3.1 分层调用规范
    • 3.2 数据类型规范
    • 3.3 数据冗余规范
    • 3.4 NULL字段处理规范
    • 3.5 公共字段规范
    • 3.6 数据表处理规范
    • 3.7 事实表划分规范
  • 四、数仓各层开发规范
    • 4.1 分层实例
    • 4.2 表的属性词条相关规范
    • 4.3 ODS层设计规范
    • 4.4 DWD层设计规范
    • 4.5 DWS层设计规范
    • 4.6 DIM设计规范
    • 4.7 DM层设计规范
    • 4.8 TMP层设计规范
  • 五、总结

一、前提概要

大数据平台开发规范示例 发布一段时间后,有小伙伴表示我汤姆就是个Sql Boy,可否来个 数据仓库开发规范示例?安排!

调侃归调侃,如果想做一名合格的Sql Boy,还真不容易…

一臻在此对过去和做数仓Ing的小伙伴们361°C鞠躬Respect以表敬意。

在这里插入图片描述

二、数仓分层原则及定义

2.1 数仓分层原则

数仓分层的目的是为了给业务提供高效的数据支撑,和层次清晰、功能明确的数据存储,为企业各角色提供稳定、准确、多元化的高可用数据,同时为数据提供更方便的管理和运维。

2.2 数仓分层定义

数仓主要包含ODS,DWD,DWS,DIM,DM几个标准化的分层,同时结合企业实际的情况,如补录的数据,在数据ETL过程中的临时处理数据等,根据用途汇总为贴源层、数据共享层、数据服务层。

  1. ODS(Operational Data Store): 贴源层数据,仅导入业务业务数据,不做任何数据的清洗转换和修改,保持与源库一致。具体情况根据项目场景设定。除了业务系统的数据,还包括补录数据处理,源系统数据快照处理等。
  2. DWD(Data Warehouse Detail): 数仓明细层数据,保留业务实体的原子粒度,并且通过数据清洗和一定程度的数据转换,保障数据质量。数据来源于ODS层,保留所有历史数据。业务实体、数据行、字段级的完整性,在该层实现。
  3. DWS(Data WareHouse Service): 数仓服务层,数仓的服务层,与之前所提到的数据服务层不同,DWS层为公共汇总层,指标均可在DWS层落地。该层使用DWD层数据,维度数据,对业务上有关联的实体做连接,形成统一粒度的,跨业务流程的,多业务实体的,轻度汇总数据。
  4. DIM(Dimension): 数据维度层,存储维度(含主数据)信息表或配置表,来源数据质量高的ODS数据(如主数据)和DWD层数据。
  5. DM(Data Market): 数据集市层,提供数据服务的分层,有明确的分析主题,基于具体的业务需求场景或者分析场景,数据仅包含维度和指标,没有复杂的逻辑处理。数据来源于DWD,DWS,DIM层,大多数为指标宽表,有较多的维度和指标。
  6. TMP:临时数据处理层,用于各层的数据加工处理过程中的临时数据处理,临时需求场景加工数据的处理。

三、数仓公共开发规范

3.1 分层调用规范

数据分层的标准流向(不含维度)为ODS->DWD->DWS->DM标准流向中,禁止出现反向依赖

维度流向为DWD->DIM或者ODS->DIM,使用ODS直接到DIM的情况,必须保障足够高的数据质量。

DIM、DWS、DM可以往自身分层写入数据,如不同粒度的数据写入。

在这里插入图片描述

数据流向如下图所示:

在这里插入图片描述

3.2 数据类型规范

在保障数据不失真,且不会增加数据存储复杂度,不增加数据处理计算量的情况下,尽量减少数据类型的数量,兼容原始数据原有的类型。

数据类型依据具体的数据存储环境而定,比如使用Apache Doris的情况如下:

  • ID类:BIGINT
  • 标签枚举:INT
  • 字符串:STRING
  • 状态描述:STRING
  • 日期:DATE yyyy-MM-dd
  • 日期时间:DATETIME yyyy-MM-dd HH:mm:ss.SSSSSS
  • 业务数额类默认使用 DECIMAL,精度根据实际情况做调整

3.3 数据冗余规范

宽表的冗余字段要确保以下原则:

  • 冗余字段要使用高频,下游3个或以上使用。
  • 冗余字段引入不应造成本身数据产生过多的延后。
  • 冗余字段和已有字段的重复率不应过大,原则上不应超过 60%,如需要可以选择join或原表拓展。

3.4 NULL字段处理规范

  • 数据类型为int的默认为-999
  • 数据类型为bigint的默认为-999999
  • 数据类型为decimal的默认为0

3.5 公共字段规范

所有数仓分层中的字段,均为小写,且不可出现中文。

物理表中的公共字段信息如下:

在这里插入图片描述

3.6 数据表处理规范

  • 增量表:
    依据具体的时间和其他标签粒度,做对应的分区或多层分区;处理过程中,源表必须包含可增量的属性字段,确保数据的完整性。
  • 全量表:
    每次写入的数据都是最新的;
    每次写入的数据都是完整的全量数据。
  • 拉链表:
    记录一个事物从开始,一直到当前状态的所有变化的信息;
    拉链表每次上报的都是历史记录的最终状态,是记录在当前时刻的历史总量;
    当前记录存的是当前时间之前的所有历史记录的最后变化量(总量)。

3.7 事实表划分规范

在维度建模中,按粒度划分,数据表分为维度表和事实表,事实表包含三种:事务型事实表,周期快照型事实表,累计快照型事实表。

  1. 事务型事实表:
    事务事实表记录事务层面的事实,保存最为原子的数据,其数据在事务发生后发生,粒度为每一行数据。
  2. 周期快照型事实表:
    有规律的,可预见的时间间隔的业务累计数据,比如按天、周、月等做业务的统计度量。
  3. 累计快照型事实表:
    在整个业务的生命周期中,表述业务多个阶段的开始和结束过程,通常有多个时间字段,并且时间不可预测,随着阶段周期的变化,记录也会随着变化而发生修改。

四、数仓各层开发规范

4.1 分层实例

数仓分册实例如下表所示:

在这里插入图片描述

4.2 表的属性词条相关规范

表的属性中会存在以下的属性词条,需要通过业务元数据去描述,不直接通过表名,避免表名太长的问题:

  • 是否宽表
  • 时效: 实时和非实时
  • 更新方式:增量,全量

以下属性需要通过表名去区分:

  • 统计周期:y表示年,m表示月,w表示周,d表示天,h表示小时,mi表示分钟
  • 维度类型:缓慢变化维(scd),非缓慢变化维。

4.3 ODS层设计规范

  1. 命名规则
  • ODS层表命名规则:ods_[类别]_[表内容]。
  • 类别分为业务表(business简称bsn),快照表(snapshot简称snap)和补录表(amended简称amd)。
  • 示例:ods_doris_load.ods_snap_stream_load,其中ods_doris_load是库名,doris是系统,load 是导入库,snap表示是快照表,stream_load是stream_load导入方式表名。
  1. 处理内容
  • 源系统数据的采集和同步,保持和源系统数据的一致性。
    处理过程分为实时和离线,实时接入的数据需要有对应的数据写入状态(新增、修改、删除),实时数据写入时间。
  • 快照表处理:
    对于源表数据量少于100万的,可按天/周/月不同的周期间隔,做全量快照表
    对于源表数据量大于1000万的,需要根据业务主键做拉链表
    对于源表数据量大于100万小于1000万的,根据具体业务的需求,做全量快照
  • 补录表处理:主要针对业务系统中没有的数据,需要导入或者补录平台录入的,用以修复数据或者完善指标规则的,如财务手工账,订单时效的基线等。补录数据需要有以下约束:固定的模板,数据适用范围和有效期,补录数据的更新机制,补录数据更新后的数据处理机制,补录表需在表中增加字段(表述补录类别和用途)。

4.4 DWD层设计规范

  1. 命名规则
  • DWD层表命名规则:dwd_[实体名]
  • 示例:dwd_doris.dwd_doris_load,其中dwd_doris是库名,doris表示AP域,doris_load表示导入凭证
  1. 处理内容
  • 数据的完整性,包括实体的完整性(分段的业务表),数据行的完整性(不同阶段的业务周期的汇集),字段的完整性(关键业务字段)。
  • 数据清洗,对于脏数据按规则进行清洗,保障原子粒度的数据质量。
  • 维度关联映射。

4.5 DWS层设计规范

  1. 命名规则
  • DWS层表命名规则:dws_[主题内容]_[统计周期]
  • 示例:dws_doris.dws_load_d,其中dws_doris是库名,load是导入全流程相关的主题内容,最后的d表示按天统计
  1. 处理内容
  • 不同实体间的关联和逻辑转换。
  • 维度退化。
  • 不同粒度的指标度量表,以及轻度汇总。
  • 不同类型的事实表。
  • 粒度较细的宽表。

4.6 DIM设计规范

  1. 命名规则
  • DIM表命名规则:dim_[主题域][维度类型][维度],维度统一库名,对于有主题域来源,通过表名识别主题域。
  • 示例:dim.dim_doris_scd_load,其中dim表示维度的库名,doris 表示AP域,scd 表示缓慢变化维,load表示导入维度
  1. 处理内容
  • 维度的一致性和准确性。
  • 数据行中,为空维度的兼容。
  • 缓慢变化维。

4.7 DM层设计规范

  1. 命名规则
  • DM层表命名规则:dm_[项目/分析域][主题内容][统计周期]。
  • 示例:dm_doris.dm_doris_load_d,其中dm_doris是库名,doris是表示AP项目,load 表示导入相关的分析,最后的d表示按天统计
  1. 处理内容
  • 基于不同分析主题的宽表,基于应用场景的维度和指标的提取。
  • 指标粒度的一致性。
  • 数据的高度汇总。
  • 保障维度完整性(所有的维度,包含为空的兼容都可在维表中关联)。

4.8 TMP层设计规范

  1. 命名规则
  • TMP层表命名规则:
    ETL作业:tmp_[分层库名_分层表名][流水]
    临时使用的表:tmp
    [用户][表内容][有效期]
  1. 处理内容
  • ETL作业中的临时表,可在ETL中临时创建和删除,必须满足模型管理员清理TMP层数据策略的要求。
  • 临时使用的表,必须有确定的生命周期,不确定有效期的,可设置较长的有效期,模型管理- 员根据有效期和用户,不定时沟通确认该临时表的清理计划。

五、总结

在这里插入图片描述

规范示例仅作为参考,实际开发中需要根据业务要求和场景进行调整适配。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1383091.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vcenter综合利用总结

1.Sphere、vCenter、ESXi简介 ESXi:安装在实体服务器上,其实是个linux内核的操作系统,官方的说法是有自己专利的一个内核,不属于以往任何现有的产品。只有安装了ESXi以后你才能在上面创建虚拟机。你可以理解成在你的台式机上装的v…

重学Java 5 idea详细使用和运算符

慢点跑,前面的路不好走 ——24.1.14 一、IDEA的使用 1.idea的介绍 1.概述:开发工具 2.特点: a、idea是java写的,所以本地上必须有正确的jdk环境 b、idea自动保存 c、不用我们打开dos命令窗口执行javac和java命令 d、idea有强大的…

高级分布式系统-第9讲 实时调度--可调度性分析

调度的目的: 分布式实时系统中,很多任务同时尝试访问共享资源(如处理器和网络),调度试图有效地利用这些资源来解决问题,以保证系统是正确的,换句话说是保证系统符合其所有的时间限制。 调度的…

Webpack模块打包工具

目录 Webpack模块打包工具知识点自测01.Webpack 简介以及体验目标讲解小结 02.Webpack 修改入口和出口目标讲解小结 03.案例-用户登录-长度判断目标讲解小结 04.Webpack 自动生成 html 文件目标讲解小结 05.Webpack-打包 css 代码目标讲解小结 06.优化-提取 css 代码目标讲解小…

吐血整理,性能测试重要指标+设计真实负载(详细总结)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、性能测试之重要…

8年老鸟,自动化测试经验,测试数据管理分析总结,一篇打通...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 问题:…

2024年软件测试行发展趋势,“我“如何成为全栈测试工程师?

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、测试行业的现状…

26.9K Star,漫画阅读 APP 开源了

今天推荐是一款适用于 Android 6.0 及更高版本的免费开源漫画阅读器,基于 Kotlin 开发的。这款 APP 完全免费、好用、无广告,自带上千个全球漫画源,在线阅读和下载都很方便,是漫画爱好者必备! 它以插件的形式提供了来自…

服务器出现500、502、503错误的原因以及解决方法

服务器我们经常会遇到访问不了的情况有的时候是因为我们服务器被入侵了所以访问不了,有的时候是因为出现了服务器配置问题,或者软硬件出现问题导致的无法访问的问题,这时候会出现500、502、503等错误代码。基于以上问题我们第一步可以先重启服…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -关于我们页面实现

锋哥原创的uniapp微信小程序投票系统实战: uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

C#,求最长回文字符串的马拉车(Manacher)算法的源代码

一、回文字符串(Palindromic String) 回文字符串(Palindromic String)是指前、后向读起来完全相同的字符串。 回文字符串除了答题似乎没有什么用处 :P 二、求解思路 求解字符串的回文子串的基本思路: 1、遍历每个位…

基于SpringBoot的房屋交易平台的设计与实现

🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅一 、设计说明 1.1 研究背景 互…

深入浅出理解SPP、ASPP、DSPP、MDSPP空间金字塔池化系列结构(综合版)

一、参考资料 目标检测:SPP-net SPP原理及实现 金字塔池化系列的理解SPP、ASPP SPP,PPM、ASPP和FPN结构理解和总结 二、空间金字塔池化(SPP) 原始论文:[1] 1. 引言 传统的卷积神经网络中,池化层通常采用固定的池化层级和固定…

高校站群内容管理系统开发语言各有优势

站群管理系统开发可以选择多种编程语言,具体选择哪种语言最好需要考虑多个因素,包括开发团队的技术栈、项目需求、性能要求、安全性等。下面列举一些常见的编程语言及其适用场景: PHP:PHP是一种广泛使用的服务器端脚本语言&#…

QT通过QPdfWriter类实现pdf文件生成与输出

一.QPdfWriter类介绍 本文代码工程下载地址: https://download.csdn.net/download/xieliru/88736664?spm1001.2014.3001.5503 QPdfWrite是一个用于创建PDF文件的类,它是Qt库的一部分。它提供了一些方法和功能,使您能够创建和写入PDF文件。…

MySQL修炼手册4:分组与聚合:GROUP BY与HAVING的应用

写在开头 MySQL数据库的强大功能为我们提供了丰富的数据处理工具,其中GROUP BY与HAVING的应用使得数据的分组与聚合变得更加灵活和高效。在本篇博客中,我们将深入研究GROUP BY与HAVING的基础知识,并通过实际案例,展示它们在数据分…

select...for update锁详解

select…for update锁详解 select…for update的作用就是:如果A事务中执行了select…for update,那么在其提交或回滚事务之前,B,C,D…事务是无法操作(写)A事务select…for update所命中的数据的…

游戏找不到emp.dll,无法运行的5种解决方法

游戏在运行过程中提示找不到emp.dll文件,这一现象的原因可能涉及到多个层面。首先,emp.dll是一个动态链接库文件,对于特定的游戏运行至关重要,它可能包含了游戏运行所必需的函数、资源或其他关键信息。当系统在加载游戏时无法找到…

【AI】Pytorch 系列:预训练模型使用

1. 模型下载 import re import os import glob import torch from torch.hub import download_url_to_file from torch.hub import urlparse import torchvision.models as modelsdef download_

k8s云原生环境搭建笔记——第二篇

目录 1、使用普通方式安装prometheus和grafana1.1、安装kube-state-metrics容器1.1.1、下载并修改yaml文件1.1.2、导入kube-state-metrics镜像1.1.3、执行yaml文件目录 1.2、安装node-exploer1.2.1、创建名称空间prometheus1.2.2、执行yaml 1.3、安装prometheus1.3.1、创建集群…