【深度学习目标检测】十五、基于深度学习的口罩检测系统-含GUI和源码(python,yolov8)

news2024/11/13 9:33:48

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于深度学习yolov8的口罩检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

本文使用的数据集来自口罩佩戴数据集,该数据集是戴各种口罩的人和不戴口罩的人的物体检测数据集。这些图像最初由台湾伊甸社会福利基金会的 Cheng Hsun Teng 收集,并由 Roboflow 团队重新标记。数据集图片如下:

该数据集包含105个训练数据,29个验证数据,15个测试数据,共包含2个类别:佩戴口罩和不佩戴口罩,原有的数据集是VOC格式,命名比较混乱,本文提供整理后的口罩数据集,包含VOC/COCO/yolov8格式。

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加mask.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/mask_det/mask-yolov8  # 替换为自己的路径
train: images/train 
val: images/val  
test: images/test 
 
# Classes
names:
  # 0: normal
  0: mask
  1: no_mask

2、修改模型配置文件

新建ultralytics/cfg/models/mask/yolov8_mask.yaml ,添加以下内容:,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 2  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov8_mask exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/mask/yolov8_mask.yaml  data=ultralytics/ultralytics/cfg/datasets/mask.yaml

4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov8_mask/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/mask.yaml

其精度如下:

Ultralytics YOLOv8.1.0 🚀 Python-3.9.18 torch-2.1.0+cu118 CUDA:0 (NVIDIA GeForce RTX 4090, 24210MiB)
YOLOv8_mask summary (fused): 168 layers, 3006038 parameters, 0 gradients, 8.1 GFLOPs
val: Scanning /home/yq/aitools/datasets/mask_det/mask-yolov8/labels/val.cache... 29 images, 0 backgrounds, 0 corrupt: 100%|█████████
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 2/2 [00:01<00:00,  1.48it
                   all         29        162      0.715      0.592       0.62      0.334
                  mask         29        142      0.807       0.69      0.775      0.427
               no_mask         29         20      0.622      0.495      0.465      0.241
Speed: 0.7ms preprocess, 29.6ms inference, 0.0ms loss, 0.5ms postprocess per image
Results saved to /home/yq/ultralytics/runs/detect/val16
💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')
 
image_path = 'test.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图:

六、代码下载

1、本文数据集下载

2、口罩识别系统源码-含GUI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1381958.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通过IP地址识别风险用户

随着互联网的迅猛发展&#xff0c;网络安全成为企业和个人关注的焦点之一。识别和防范潜在的风险用户是维护网络安全的关键环节之一。IP数据云将探讨通过IP地址识别风险用户的方法和意义。 IP地址的基本概念&#xff1a;IP地址是互联网上设备的独特标识符&#xff0c;它分为IP…

前端工程化相关

工具方法&#xff1a; 知道软件包名&#xff0c;拿到源码或者路径的方法 在浏览器输入以下内容&#xff0c;就可以找到你想要的。。。 unpkg.com/输入包名 一、模块化 ESM特性清单&#xff1a; 自动采取严格模式&#xff0c;忽略“use strict”每个ESM模块都是单独的私有作用…

“华为杯“第四届中国研究生数学建模竞赛-D题:邮路规划与邮车调度

目录 摘 要&#xff1a; 1.问题的重述 2.模型的假设与符号说明 2.1 针对本问题&#xff0c;本文做出如下假设 2.2 符号说明 3.问题的数学模型 4.问题的求解 4.1 问题一的求解 4.1.1 最少邮车数的求法 4.1.2 邮路规划及路径选择 4.1.3 问题的求解结果 4.2 问题二的求…

FPGA之初探

FPGA的构成 基本逻辑单元CLB CLB是FPGA的基本逻辑单元&#xff0c; 一个 CLB 包括了 2 个 Slices&#xff0c;所以知道Slices的数量就可以知道FPGA的“大概”逻辑资源容量了。一个 Slice 等于 4 个6输入LUT8个触发器(flip-flop)算数运算逻辑&#xff0c;每个 Slice 的 4 个触发…

在线的货币兑换平台源码下载

在线的货币兑换平台&#xff0c;可帮助全球各地的个人和企业将货币从一种货币兑换为另一种货币。该货币兑换平台是 Codecanyon 中最先进的脚本。 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88728084

VMware 安装及创建一个 CentOS Stream 的详细指南

文章目录 1. 简介2. 下载和安装1&#xff09;通过官网安装2&#xff09;通过电脑管家安装 3. 下载操作系统镜像包4. 创建虚拟机结语 1. 简介 在过去&#xff0c;服务器通常是运行单一操作系统和应用程序的物理设备。这就导致了硬件资源浪费和管理复杂性的增加。为了解决这些问…

【C++刷题】位运算

【C刷题】位运算 一、二进制中最右侧的11、位1的个数&#xff08;1&#xff09;题目链接&#xff08;2&#xff09;解析&#xff08;3&#xff09;代码 2、比特位计数&#xff08;1&#xff09;题目链接&#xff08;2&#xff09;解析&#xff08;3&#xff09;代码 3、汉明距离…

LTESniffer:一款功能强大的LTE上下行链路安全监控工具

关于LTESniffer LTESniffer是一款功能强大的LTE上下行链路安全监控工具&#xff0c;该工具是一款针对LTE的安全开源工具。 该工具首先可以解码物理下行控制信道&#xff08;PDCCH&#xff09;并获取所有活动用户的下行链路控制信息&#xff08;DCI&#xff09;和无线网络临时…

重温经典struts1之自定义全局异常处理类处理异常以及<exeception>标签的配置

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 前言 前面的文章&#xff0c;我们学习了&#xff0c;Action类中调用Service&#xff0c;通过try…catch代码块&#xff0c;catch自定义异常类&#xff0c;通过ActionMessage…

cesium粒子效果——船舰水花效果

效果&#xff1a; 实现思路&#xff08;最后有完整代码&#xff09;&#xff1a; 与上篇文章思路一样 无非就是更换了模型与粒子图片以及粒子的配置&#xff0c;上一篇文章链接&#xff1a;https://blog.csdn.net/m0_63701303/article/details/135551667?spm1001.2014.3001.5…

neo4j 图数据库 py2neo 操作 示例代码

文章目录 摘要前置NodeMatcher & RelationshipMatcher创建节点查询获取节点节点有则查询&#xff0c;无则创建创建关系查询关系关系有则查询&#xff0c;无则创建 Cypher语句创建节点 摘要 利用py2neo包&#xff0c;实现把excel表里面的数据&#xff0c;插入到neo4j 图数据…

React Native 环境安装

Notion – The all-in-one workspace for your notes, tasks, wikis, and databases. 搭建开发环境 React Native 中文网 Homebrew&#xff08;包管理器&#xff09; → rvm&#xff08;ruby版本管理&#xff09; → ruby → cocoapods 安装 Homebrew Homebrew /bin/ba…

java每日一题——ATM系统编写(答案及编程思路)

前言&#xff1a; 基础语句学完&#xff0c;也可以编写一些像样的程序了&#xff0c;现在要做的是多加练习&#xff0c;巩固下知识点&#xff0c;打好基础&#xff0c;daydayup! 题目&#xff1a;模仿银行ATM系统&#xff0c;可以创建用户&#xff0c;存钱&#xff0c;转账&…

分布式搜索引擎--认识

elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 。 elasticsearch结合kibana、Logstash、Beats&#xff0c;也就是elastic stack&#xff08;ELK&#xff09;。被广泛…

极简Oracle 11g Release 2 (11.2.0.1.0)

注意&#xff1a;此法无法安装oracle11g(11.2.0.4)&#xff0c;会报如下错&#xff1a; [FATAL] [INS-10105] The given response file /assets/db_install.rsp is not valid. 一、下载解压ORACLE安装包。 从 oracle 官网 下载所需要的安装包&#xff0c;这里我们以 oracle 11…

【MCAL】MCU模块详解

目录 前言 正文 1. MCU模块介绍 2. MCU依赖的模块 3. MCU模块提供服务 3.1 时钟的初始化 3.2 MCU模式的配置 3.3 MCU软件复位功能 3.4 RAM的初始化 4.MCU重要数据类型 4.1 Mcu_ResetType 4.2 Mcu_ModeType 5. MCU重要API 5.1 Mcu_Init 5.2 Mcu_InitClock 5.3 M…

Open3D 点云等比例缩放(20)

Open3D 点云等比例缩放(20) 一、算法介绍二、算法实现1.代码世人慌慌张张,不过图碎银几两, 偏偏这碎银几两,能解世间万种慌张。 一、算法介绍 实现这样一个功能,沿着中心,按照指定的比例,比如1/2,缩小或者放大点云,保存到新的文件中 二、算法实现 1.代码 import…

Matlab:toposort

语法&#xff1a; n toposort(G) %调用toposort函数&#xff0c;对有向图G进行拓扑排序&#xff0c;并将排序结果存储在变量n中 n toposort(G,Order,algorithm) [n,H] toposort(___) %使用了两个输出参数的形式来调用toposort函数。除了返回排序结果n外&am…

uniapp 编译后文字乱码的解决方案

问题: 新建的页面中编写代码&#xff0c;其中数字和图片都可以正常显示&#xff0c;只有中文编译后展示乱码 页面展示也是乱码 解决方案: 打开HuilderX编辑器的【文件】- 【以指定编码重新打开】- 【选择UTF-8】 然后重新编译就可以啦~ 希望可以帮到你啊~

bootloader学习笔记及SD卡启动盘制作

Bootloader介绍 在操作系统运行之前运行的一小段代码&#xff0c;用于将软硬件环境初始化到一个合适的状态&#xff0c;为操作系统的加载和运行做准备&#xff08;其本身不是操作系统&#xff09; Bootloader基本功能 1、初始化软硬件环境 2、引导加载linux内核 3、给linux…