1 项目背景及意义
全球范围内的公共卫生安全和人脸识别技术的发展。在面对新型冠状病毒等传染病的爆发和传播风险时,佩戴口罩成为一种重要的防护措施。然而,现有的人脸识别系统在识别戴口罩的人脸时存在一定的困难。
通过口罩识别技术,可以更准确地辨别佩戴口罩的人员身份,有助于提高公共安全水平,减少犯罪行为和恶意攻击的风险,且传统的人脸识别技术在遇到戴口罩的情况下准确度较低。通过开发口罩识别的异构高性能项目,可以提高人脸识别系统在戴口罩情况下的准确性和可靠性。在口罩成为日常生活必备品的背景下,通过口罩识别技术可以实现更便捷的公共服务,如自助购物、自助取票等,提升人们的生活体验。
这一技术的应用有助于应对公共卫生安全挑战,并推动人脸识别技术的进一步发展与应用。
2 环境搭建
2.1 yolov5模型下载
从github将yolov5的模型下载下来,github中yolov5首页如下图所示,通过右上角code下载全部代码。yolov5模型地址github地址
可通过release下载不同版本,本项目使用的是yolov5-5.0版本,可自由选择最新版本.
2.2 下载依赖
在已经有python环境的情况下,可以选用conda来构建虚拟环境,设置一个新的pytorch环境。
下载的yolov5模型根目录下有一个requirement.txt,其中包含了yolo所需的依赖包,通过指令pip install –r requirement.txt
快速下载。如下图所示,图中的“already satisfied”是由于依赖已安装
3 数据集处理
实验中初始数据集为jpg格式图片与对应的txt格式标签文件,需要转为yolo格式的标签文件,以及划分数据集。代码部分主要参考目标检测数据集划分
3.1 txt转为xml
对于没有标签文件的图片可以使用labelImg标注,保存为xml文件,则不需要中txt转为xml,本次实验中没有xml标签,所以需要先转为xml。
文件结构如下图所示,在项目根目录下创建VOCdevkit/VOC2007,分为三个文件夹,JPEGImages用以存放图片,YOLO存放待转txt标签文件,Annotaions目前为空,用以存放转化后的XML文件。
在根目录下创建txttoxml.py,用以执行代码转txt为xml,详细代码如下
from xml.dom.minidom import Document
import os
import cv2
# def makexml(txtPath, xmlPath, picPath): # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
def makexml(picPath, txtPath, xmlPath): # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
"""此函数用于将yolo格式txt标注文件转换为voc格式xml标注文件
在自己的标注图片文件夹下建三个子文件夹,分别命名为picture、txt、xml
"""
dic = {'0': "face",
'1': "mask",
}
files = os.listdir(txtPath)
for i, name in enumerate(files):
xmlBuilder = Document()
annotation = xmlBuilder.createElement("annotation") # 创建annotation标签
xmlBuilder.appendChild(annotation)
txtFile = open(txtPath + name)
txtList = txtFile.readlines()
img = cv2.imread(picPath + name[0:-4] + ".jpg")
Pheight, Pwidth, Pdepth = img.shape
folder = xmlBuilder.createElement("folder") # folder标签
foldercontent = xmlBuilder.createTextNode("driving_annotation_dataset")
folder.appendChild(foldercontent)
annotation.appendChild(folder) # folder标签结束
filename = xmlBuilder.createElement("filename") # filename标签
filenamecontent = xmlBuilder.createTextNode(name[0:-4] + ".jpg")
filename.appendChild(filenamecontent)
annotation.appendChild(filename) # filename标签结束
size = xmlBuilder.createElement("size") # size标签
width = xmlBuilder.createElement("width") # size子标签width
widthcontent = xmlBuilder.createTextNode(str(Pwidth))
width.appendChild(widthcontent)
size.appendChild(width) # size子标签width结束
height = xmlBuilder.createElement("height") # size子标签height
heightcontent = xmlBuilder.createTextNode(str(Pheight))
height.appendChild(heightcontent)
size.appendChild(height) # size子标签height结束
depth = xmlBuilder.createElement("depth") # size子标签depth
depthcontent = xmlBuilder.createTextNode(str(Pdepth))
depth.appendChild(depthcontent)
size.appendChild(depth) # size子标签depth结束
annotation.appendChild(size) # size标签结束
for j in txtList:
oneline = j.strip().split(" ")
object = xmlBuilder.createElement("object") # object 标签
picname = xmlBuilder.createElement("name") # name标签
namecontent = xmlBuilder.createTextNode(dic[oneline[0]])
picname.appendChild(namecontent)
object.appendChild(picname) # name标签结束
pose = xmlBuilder.createElement("pose") # pose标签
posecontent = xmlBuilder.createTextNode("Unspecified")
pose.appendChild(posecontent)
object.appendChild(pose) # pose标签结束
truncated = xmlBuilder.createElement("truncated") # truncated标签
truncatedContent = xmlBuilder.createTextNode("0")
truncated.appendChild(truncatedContent)
object.appendChild(truncated) # truncated标签结束
difficult = xmlBuilder.createElement("difficult") # difficult标签
difficultcontent = xmlBuilder.createTextNode("0")
difficult.appendChild(difficultcontent)
object.appendChild(difficult) # difficult标签结束
bndbox = xmlBuilder.createElement("bndbox") # bndbox标签
xmin = xmlBuilder.createElement("xmin") # xmin标签
mathData = int(((float(oneline[1])) * Pwidth + 1) - (float(oneline[3])) * 0.5 * Pwidth)
xminContent = xmlBuilder.createTextNode(str(mathData))
xmin.appendChild(xminContent)
bndbox.appendChild(xmin) # xmin标签结束
ymin = xmlBuilder.createElement("ymin") # ymin标签
mathData = int(((float(oneline[2])) * Pheight + 1) - (float(oneline[4])) * 0.5 * Pheight)
yminContent = xmlBuilder.createTextNode(str(mathData))
ymin.appendChild(yminContent)
bndbox.appendChild(ymin) # ymin标签结束
xmax = xmlBuilder.createElement("xmax") # xmax标签
mathData = int(((float(oneline[1])) * Pwidth + 1) + (float(oneline[3])) * 0.5 * Pwidth)
xmaxContent = xmlBuilder.createTextNode(str(mathData))
xmax.appendChild(xmaxContent)
bndbox.appendChild(xmax) # xmax标签结束
ymax = xmlBuilder.createElement("ymax") # ymax标签
mathData = int(((float(oneline[2])) * Pheight + 1) + (float(oneline[4])) * 0.5 * Pheight)
ymaxContent = xmlBuilder.createTextNode(str(mathData))
ymax.appendChild(ymaxContent)
bndbox.appendChild(ymax) # ymax标签结束
object.appendChild(bndbox) # bndbox标签结束
annotation.appendChild(object) # object标签结束
f = open(xmlPath + name[0:-4] + ".xml", 'w')
xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')
f.close()
if __name__ == "__main__":
picPath = "VOCdevkit/VOC2007/JPEGImages/"
txtPath = "VOCdevkit/VOC2007/YOLO/"
xmlPath = "VOCdevkit/VOC2007/Annotations/"
makexml(picPath, txtPath, xmlPath)
3.2 xml转为yolo
yolo标签文件也是txt格式的,但要直接使用txt很可能会出错,所以需要先转xml再转yolo。
实验通过文件命名划分数据集,将test_00003到test_00004作为验证集,大约1000张图片。test_00004以后作为测试集,大约800张。余下作为训练集,大约6000张,如果需要修改这个,可用正则。
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
import re
from shutil import copyfile
classes = ["face", "mask"]
#classes=["ball"]
TRAIN_RATIO = 80
def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith("._"):
os.remove(abspath)
else:
clear_hidden_files(abspath)
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id):
in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' %image_id)
out_file = open('VOCdevkit/VOC2007/YOLO/%s.txt' %image_id, 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()
wd = os.getcwd()
wd = os.getcwd()
data_base_dir = os.path.join(wd, "VOCdevkit/")
if not os.path.isdir(data_base_dir):
os.mkdir(data_base_dir)
work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, "YOLO/")
if not os.path.isdir(yolo_labels_dir):
os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(data_base_dir, "images/")
if not os.path.isdir(yolov5_images_dir):
os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
if not os.path.isdir(yolov5_labels_dir):
os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
if not os.path.isdir(yolov5_images_train_dir):
os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_val_dir = os.path.join(yolov5_images_dir, "val/")
if not os.path.isdir(yolov5_images_val_dir):
os.mkdir(yolov5_images_val_dir)
clear_hidden_files(yolov5_images_val_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, "test/")
if not os.path.isdir(yolov5_images_test_dir):
os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
if not os.path.isdir(yolov5_labels_train_dir):
os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_val_dir = os.path.join(yolov5_labels_dir, "val/")
if not os.path.isdir(yolov5_labels_val_dir):
os.mkdir(yolov5_labels_val_dir)
clear_hidden_files(yolov5_labels_val_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "test/")
if not os.path.isdir(yolov5_labels_test_dir):
os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
val_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
test_file = open(os.path.join(wd, "yolov5_test.txt"), 'w')
train_file.close()
val_file.close()
test_file.close()
train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
val_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
test_file = open(os.path.join(wd, "yolov5_test.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
for i in range(0,len(list_imgs)):
path = os.path.join(image_dir,list_imgs[i])
if os.path.isfile(path):
image_path = image_dir + list_imgs[i]
voc_path = list_imgs[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + '.xml'
annotation_path = os.path.join(annotation_dir, annotation_name)
label_name = nameWithoutExtention + '.txt'
label_path = os.path.join(yolo_labels_dir, label_name)
if(nameWithoutExtention.startswith("test_00003")): # test dataset
if os.path.exists(annotation_path):
val_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_val_dir + voc_path)
copyfile(label_path, yolov5_labels_val_dir + label_name)
elif(nameWithoutExtention.startswith("test_00004")):
if os.path.exists(annotation_path):
test_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_test_dir + voc_path)
copyfile(label_path, yolov5_labels_test_dir + label_name)
else: # train dataset
if os.path.exists(annotation_path):
train_file.write(image_path + '\n')
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_train_dir + voc_path)
copyfile(label_path, yolov5_labels_train_dir + label_name)
train_file.close()
val_file.close()
test_file.close()
划分后文件结构如图所示,在VOCdevkit下生成了images与labels文件夹分别存放图片和yolo标签文件。
images下文件结构如图所示,test、train、val文件夹用以存放不同类型的数据集图片,labels文件夹同理
4 模型训练
4.1 下载yolov5预训练模型
同样在github的yolov5官网release页面可找到发布的预训练模型,如图所示。使用预训练模型能加快训练速度。实验中选择最基础的yolo5s.pt,精度更高的预训练模型需要更长的训练时间,实验中选择5s即可。
将下载后的模型放入weights目录下,如图所示
4.2 更改配置文件
4.2.1 修改模型配置文件
本着不破坏原文件的原则,将我们需要修改的models目录下的yolov5s.yaml复制,重命名为mask.yaml,修改其中nc为2,即改类型数量(number of classes)为2,如图所示
4.2.2 修改数据集配置文件
接着修改数据集配置文件,复制data下的voco.yaml,也重命名为mask.yaml,修改数据集对应位置,类型数量,类型名字,如图所示
4.2.3 修改训练代码参数
最后修改train.py中的参数加载修改后的配置,并设置需要的配置,那么训练的配置就已配置完毕
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/mask.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/mask.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--entity', default=None, help='W&B entity')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
opt = parser.parse_args()
4.3 训练模型
配置好参数后运行train.py即可开始训练,由于yolo训练时间较长,6000张的训练集,且云端GPU资源有限,CPU与GPU交替训练,实验只训练了80次,但也断断续续花费了10多个小时,部分训练情况如图所示。
4.3.1 查看训练情况
通过参数可及时查看训练情况
训练集
- box:bounding box的平均损失值
- obj: objectness的平均损失值
- cls: 分类的平均损失值
- total: 损失值的总和,即box+obj+cls
- labels: 每个batch中标注物体数量的平均值
- img_size: 图像大小
验证集
- Images: 类别中图片数量
- Labels: 类别中真实标注数量
- P: 该类别的预测精准度
- R: 找回率
- mAP@.5: 平均精度均值,即在loU阈值为0.5时的平均精度
- mAP@.5:.95: loU阈值从0.5到0.95之间的平均精度均值
这些指标的意义在于能够在训练过程中查看训练情况,及时调整训练参数。
yolo同时支持tensorboard可视化查看训练情况,由于实验在云端进行,使用这些参数监控模型的训练过程。
4.3.2 训练参数的调整
5 系统测试
已训练模型会被放在runs/train/exp/weights文件夹中,其中best是最好的权重参数文件,选择best.pt作为最终的模型。
yolov5本身有测试模块。