【搜索引擎设计:信息搜索怎么避免大海捞针?

news2024/9/22 17:32:06

在前面我们提到了网页爬虫设计:如何下载千亿级网页?中,我们讨论了大型分布式网络爬虫的架构设计,但是网络爬虫只是从互联网获取信息,海量的互联网信息如何呈现给用户,还需要使用搜索引擎完成。因此,我们准备开发一个针对全网内容的搜索引擎,产品名称为“Bingoo”。

Bingoo 的主要技术挑战包括:

  1. 针对爬虫获取的海量数据,如何高效地进行数据管理;
  2. 当用户输入搜索词的时候,如何快速查找包含搜索词的网页内容;
  3. 如何对搜索结果的网页内容进行排序,使排在搜索结果列表前面的网页,正好是用户期望看到的内容。

因此,针对此类问题,我们开发一个搜索引擎系统!

1、概要设计

一个完整的搜索引擎包括分布式爬虫、索引构造器、网页排名算法、搜索器等组成部分,Bingoo 的系统架构如下:

image-20231226130403138

分布式爬虫通过存储服务器将爬取的网页存储到分布式文件集群 HDFS,为了提高存储效率,网页将被压缩后存储。存储的时候,网页一个文件挨着一个文件地连续存储,存储格式如下:

image-20231226130455447

每个网页被分配得到一个 8 字节长整型 docID,docID 之后用 2 个字节记录网页的 URL的长度,之后 4 个字节记录压缩后网页内容数据的长度,所有存储的网页的头 14 个字节都是同样的格式。之后存储 URL 字符串和压缩后的网页内容数据。读取文件的时候,先读14 个字节的头信息,根据头信息中记录的 URL 长度和数据长度,再读取对应长度的 URL和网页内容数据。

搜索引擎能够快速查找的核心就是利用索引,根据用户的查询内容查找匹配的索引,根据索引列表构建结果页面。索引的构造主要通过索引构造器完成,索引构造器读取 HDFS 中的网页内容,解压缩后提取网页中的单词,构建一个“docID-> 单词列表”的正排索引。然后,索引构造器再根据这个正排索引构建一个“单词 ->docID 列表”的倒排索引,“docID 列表”就是包含了这个单词的所有网页列表。利用这个倒排索引,搜索器可以快速获得用户搜索词对应的所有网页。

网页中所有的单词构成了一个词典,实际上,词典就是一个 Hash 表,key 就是单词,value 就是倒排索引的网页列表。虽然互联网页的内容非常庞大,但是使用到的单词其实是非常有限的。根据 Google 的报告,256M 内存可以存放 1400 万个单词,这差不多就是英文单词的全部了。

在构建索引的过程中,因为要不断修改索引列表,还要进行排序,所以,有很多操作是需要进行加锁同步完成的。对于海量的互联网页的计算,这样的索引构建速度太慢了。因此我们设计了 64 个索引桶,根据 docID 取模,将不同网页分配到不同的桶中,在每个桶中分别进行索引构建,通过并行计算来加快索引处理速度。

索引构造器在读取网页内容、构造索引的时候,还会调用 URL 提取器,将网页中包含的URL 提取出来,构建一个链接关系表。链接关系表的格式是“docID->docID”,前一个docID 是当前网页的 docID,后一个 docID 是当前网页中包含的 URL 对应的 docID。一个网页中会包含很多个 URL,也就是会构建出很多个这样的链接关系。后面会利用这个链接关系表,使用 PageRank 排名算法对所有网页进行打分排名,当索引器得到查找的网页列表时,利用 PageRank 值进行排名,最终呈现给用户,保证用户最先看到的网页是最接近用户期望的结果页面。

2、详细设计

一个运行良好的搜索引擎的核心技术就是索引和排名,所以我们将分别说明这两种技术要点!

1、索引

索引构造器从 HDFS 读取网页内容后,解析每个页面,提取网页里的每个单词。如果是英文,那么每个单词都用空格分隔,比较容易;如果是中文,需要使用中文分词器才能提取到每个单词,比如“高并发架构”,使用中文分词器得到的就是“高并发”、“架构”两个词。

首先,索引构造器将所有的网页都读取完,构建出所有的“docID-> 单词列表”正排索引。

image-20231226131318766

然后遍历所有的正排索引,再按照“单词→docID 列表”的方式组织起来,就是倒排索引了。

image-20231226131337477

我们这个例子中只有两个单词、7 个网页。事实上,Bingoo 数以千亿的网页就是这样通过倒排索引组织起来的,网页数量虽然庞大,但是单词数却是比较有限的。所以,整个倒排索引的大小相比于网页数量要小得多。Bingoo 将每个单词对应的网页列表存储在硬盘中,而单词则存储在内存的 Hash 表,也就是词典中,词典示例:

image-20231226131444415

对于部分热门的单词,整个网页列表也可以存储在内存中,相当于缓存。在词典中,每个单词记录下硬盘或者内存中的网页列表地址,这样只要搜索单词,就可以快速得到对应的网页地址列表。Bingoo 根据列表中的网页编号 docID,展示对应的网页信息摘要,就完成了海量数据的快速检索。

如果用户的搜索词正好是一个单词,比如“高并发”,那么直接查找词典,得到网页列表就完成查找了。但是如果用户输入的是一个句话,那么搜索器就需要将这句话拆分成几个单词,然后分别查找倒排索引。这样的话,得到的就是几个网页列表,还需要对这几个网页列表求交集,才能得到最终的结果列表。

比如,用户输入“高并发架构”进行搜索,那么搜索器就会拆分成两个词:“高并发”、“架构”,得到两个倒排索引:

  • 高并发 ->2,3,5,7

  • 架构 ->1,2,4

需要对这两个倒排索引求交集,也就是同时包含“高并发”和“架构”的网页才是符合搜索要求的结果,最终的交集结果应该是只有一篇网页,即 docID 为 2 的满足要求。

列表求交集最简单的实现就是双层 for 循环,但是这种算法的时间复杂度是 O(n^2),我们的网页列表长度(n)可能有千万级甚至更高,这样的计算效率太低。

一个改进的算法是拉链法,我们将网页列表先按照 docID 的编号进行排序,得到的就是这样两个有序链表:

image-20231226131628561

同时遍历两个链表,如果其中一个链表当前指向的元素小于另一个链表当前指向的元素,那么这个链表就继续向前遍历;如果两个链表当前指向的元素相同,该元素就是交集元素,记录在结果列表中;依此继续向前遍历,直到其中一个链表指向自己的尾部 nil。

拉链法的时间复杂度是 O(2n),远优于双层循环。但是对于千万级的数据而言,还是太慢。我们还可以采用数据分片的方式进行并行计算,以实现性能优化。

比如,我们的 docID 分布在[0, 1 万亿) 区间,而每个倒排索引链表平均包含 1 千万个docID。我们把所有的 docID 按照 1 千亿进行数据分片,就会得到 10 个区间[0, 1 千亿)[1千亿,2 千亿)……[9 千亿,1 万亿)。每个倒排索引链表大致均匀分布在这 10 个区间,我们就可以依照这 10 个区间范围,将每个要遍历的链表切分为 10 片,每片大约包含 1 百万个 docID。两个链表只在自己对应的分片内求交集即可,因此我们可以启动 10 个线程对10 个分片进行并行计算,速度可提高 10 倍。

事实上,两个 1 千万长度的链表求交集,最终的结果可能不过几万,也就是说,大部分的比较都是不相等的。比如下面的例子。

image-20231226131736242

第一个链表遍历到自己的最后一个元素,才和第二个链表的第一个元素相同。那么第一个链表能不能跳过前面那些元素呢?很自然,我们想到可以用跳表来实现,如下图:

image-20231226131804802

跳表实际上是在链表上构建多级索引,在索引上遍历可以跳过底层的部分数据,我们可以利用这个特性实现链表的跳跃式比较,加快计算速度。使用跳表的交集计算时间复杂度大约是 O(log(n))。

此外,虽然搜索引擎利用倒排索引已经能很快得到搜索结果了,但搜索引擎应用还会使用缓存对搜索进行加速,将整个搜索词对应的搜索结果直接放入缓存,以减少倒排索引的访问压力,以及不必要的集合计算。

2、PageRank 排名算法

Bingoo 使用 PageRank 算法进行网页结果排名,以保证搜索结果更符合用户期待。

PageRank 算法会根据网页的链接关系给网页打分。如果一个网页 A 包含另一个网页 B 的超链接,那么就认为 A 网页给 B 网页投了一票。一个网页得到的投票越多,说明自己越重要;越重要的网页给自己投票,自己也越重要。

PageRank 算法就是计算每个网页的 PageRank 值,最终的搜索结果也是以网页的PageRank 值排序,展示给用户。事实证明,这种排名方法非常有效,PageRank 值更高的网页,确实更满足用户的搜索期望。

以下面四个网页 A、B、C、D 举例,带箭头的线条表示链接。

image-20231226132710017

B 网页包含了 A、D 两个页面的超链接,相当于 B 网页给 A、D 每个页面投了一票,如果初始的时候,所有页面都是 1 分,那么经过这次投票后,B 给了 A 和 D 每个页面 1/2 分(B 包含了 A、D 两个超链接,所以每个投票值 1/2 分),自己从 C 页面得到 1/3 分(C包含了 A、B、D 三个页面的超链接,每个投票值 1/3 分)。

而 A 页面则从 B、C、D 分别得到 1/2,1/3,1 分。用公式表示就是

image-20231226132751916

等号左边是经过一次投票后,A 页面的 PageRank 分值;等号右边每一项的分子是包含 A页面超链接的页面的 PageRank 分值,分母是该页面包含的超链接数目。

这样经过一次计算后,每个页面的 PageRank 分值就会重新分配,重复同样的算法过程,经过几次计算后,根据每个页面 PageRank 分值进行排序,就得到一个页面重要程度的排名表。根据这个排名表,将用户搜索出来的网页结果排序,排在前面的通常也正是用户期待的结果。

但是这个算法还有个问题,如果某个页面只包含指向自己的超链接,其他页面不断给它送分,而自己一分不出,随着计算执行次数越多,它的分值也就越高,这显然是不合理的。这种情况就像下图所示的,A 页面只包含指向自己的超链接。

image-20231226132818673

解决方案是,设想浏览一个页面的时候,有一定概率不是点击超链接,而是在地址栏输入一个 URL 访问其他页面,表示在公式上,就是

image-20231226132837504

上面 (1 - a)就是跳转到其他任何页面的概率,通常取经验值 0.15(即 为 0.85),因为有一定概率输入的 URL 是自己的,所以加上上面公式最后一项,其中分母 4 表示所有网页的总数。

那么对于 N 个网页,任何一个页面 的 PageRank 计算公式如下:

image-20231226132918850

公式中 Pj ∈ M(P**i), 表示所有包含有 超链接的 , 表示 页面包含的超链接数,N 表示所有的网页总和。由于 Bingoo 要对全世界的网页进行排名,所以这里的 N 是一个万亿级的数字。

计算开始的时候,将所有页面的 PageRank 值设为 1,带入上面公式计算,每个页面都得到一个新的 PageRank 值。再把这些新的 PageRank 值带入上面的公式,继续得到更新的PageRank 值,如此迭代计算,直到所有页面的 PageRank 值几乎不再有大的变化才停止

3、总结

PageRank 算法我们现在看起来平平无奇,但是正是这个算法造就了 Google 近 2 万亿美元的商业帝国。在 Google 之前,Yahoo 已经是互联网最大的搜索引擎公司。按照一般的商业规律,如果一个创新公司不能带来十倍的效率或者体验提升,就根本没有机会挑战现有的巨头。而 Google 刚一出现,就给 Yahoo 和旧有的搜索引擎世界带来摧枯拉朽的扫荡,用户体验的提升不止十倍,这其中的秘诀正是 PageRank。

二十几年前,我刚刚接触编程的时候,我们中国也有很多这样的编程英雄,王选、王江民、求伯君、雷军等等,他们几乎凭一己之力就创造出一个行业。正是对这些英雄们的崇拜和敬仰,引领我在编程这条路上一直走下去。软件编程是一个可以创造奇迹的地方,而不只是为了混碗饭吃。梦想不能当饭吃,但是梦想带来的可不止是一碗饭。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1381225.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AWS EC2的SSM配置(AWS云中的跳板机)

问题 开发人员需要访问AWS云中私有子网的数据库服务等,都需要通过EC2进行SSH隧道代理。这里假设本地已经有一款稳定优秀的SSH客户端工具,并且假设已经会熟练使用SSH的隧道代理。 1.创建EC2 搜索找到EC2服务,如下图: 点击“启动…

ssm基于Java的壁纸网站设计与实现论文

目 录 目 录 I 摘 要 III ABSTRACT IV 1 绪论 1 1.1 课题背景 1 1.2 研究现状 1 1.3 研究内容 2 2 系统开发环境 3 2.1 vue技术 3 2.2 JAVA技术 3 2.3 MYSQL数据库 3 2.4 B/S结构 4 2.5 SSM框架技术 4 3 系统分析 5 3.1 可行性分析 5 3.1.1 技术可行性 5 3.1.2 操作可行性 5 3…

OpenHarmony源码解析之编译构建

前言 OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目,目标是面向全场景、全连接、全智能时代、基于开源的方式,搭建一个智能终端设备操作系统的框架和平台,促进万物互联产业的繁荣发展…

用通俗易懂的方式讲解:Stable Diffusion WebUI 从零基础到入门

本文主要介绍 Stable Diffusion WebUI 的实际操作方法,涵盖prompt推导、lora模型、vae模型和controlNet应用等内容,并给出了可操作的文生图、图生图实战示例。适合对Stable Diffusion感兴趣,但又对Stable Diffusion WebUI使用感到困惑的同学。…

Linux:信号

目录 1.信号 2.信号的过程 a.信号的产生 1:键盘产生, 异常产生 2:系统调用产生信号 3.软件条件产生信号 4.硬件异常产生信号 b.信号的发送 c.信号的处理 d.总结与思考 3.信号保存 1.信号及其它相关常见概念 2.在内核中的表示 3.sigset_t 4. 信号集操作函数 4.信…

C#基于ScottPlot进行可视化

前言 上一篇文章跟大家分享了用NumSharp实现简单的线性回归,但是没有进行可视化,可能对拟合的过程没有直观的感受,因此今天跟大家介绍一下使用C#基于Scottplot进行可视化,当然Python的代码,我也会同步进行可视化。 P…

【SQL注入】SQLMAP v1.7.11.1 汉化版

下载链接 【SQL注入】SQLMAP v1.7.11.1 汉化版 简介 SQLMAP是一款开源的自动化SQL注入工具,用于扫描和利用Web应用程序中的SQL注入漏洞。它在安全测试领域被广泛应用,可用于检测和利用SQL注入漏洞,以验证应用程序的安全性。 SQL注入是一种…

脱离于ASP.NET 和Visual Studio编辑Razor脚本

Razor Pad是一个编辑Razor脚本的工具,脱离于ASP.NET 和Visual Studio。 github地址:https://github.com/RazorPad/RazorPad 如果在编译源码时出现:签名时出错: 未能对 bin\Debug\app.publish\RazorPad.exe 签名。SignTool Error: No certifi…

myql进阶-一条查询sql在mysql的执行过程

目录 1. 流程图 2. 各个过程 2.1 连接器 2.2 分析器 2.3 优化器 2.4 执行器 2.5 注意点 1. 流程图 2. 各个过程 假设我们执行一条sql语句如下: select * from t_good where good_id 1 2.1 连接器 首先我们会和mysql建立连接,此时就会执行到连接…

Java+Mysql存储过程生成订单序列号

Mysql存储过程生成唯一订单号 直接上代码!! 1.创建存储过程 CREATE DEFINERrootlocalhost PROCEDURE getOrderSerialNo(# 前缀in orderPrefix varchar(64), # 返回结果out result int) BEGIN# 当前流水号declare curOrderNo int;# 默认值为0declare e…

【问题探讨】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究

目录 主要内容 模型研究 结果一览 下载链接 主要内容 该模型以环境保护成本和运行成本为双目标构建了微电网优化调度模型,模型目标函数和约束条件复现文献《基于改进粒子群算法的微电网多目标优化调度》,程序的特点是采用非支配排序的蜣螂…

学习selenium+python使用 XPath 表达式来实现找到目标元素时智能封装等待,执行测试代码启动Chrome浏览器后,地址栏只显示data;

背景 学习使用 XPath 表达式来实现找到目标元素时智能封装等待执行测试代码启动Chrome浏览器后,地址栏只显示data; 代码如下 import unittest from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from …

Java SE入门及基础(11)

程序调试 1. 什么是程序调试 当程序出现问题时,我们希望程序能够暂停下来,然后通过我们操作使代码逐行执行,观察整个过程中变量的变化是否按照我们设计程序的思维变化,从而找问题并解决问题,这个过程称之为程序调试…

ftp安装与配置 云服务器 CentOS7

1、FTP的安装 #安装 yum install -y vsftpd#设置开机启动 systemctl enable vsftpd.service#启动 systemctl start vsftpd.service#停止 systemctl stop vsftpd.service#查看状态 systemctl status vsftpd.service 2、配置FTP #修改前先进行备份文件 cp /etc/vsftpd/vsftpd…

LeetCode264. 丑数 II(相关话题:多重指针动态规划)

题目描述 给你一个整数 n ,请你找出并返回第 n 个 丑数 。丑数 就是质因子只包含 2、3 和 5 的正整数。 示例 1: 输入:n 10 输出:12 解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。示例 2&am…

物联网协议Coap之Core和NetWork简介

目录 前言 一、Coap的Core包 1、Coap对象 2、Message对象 3、Request对象 4、Response对象 二、Coap的NetWork调试 1、UDP运行模式 2、Network消息接收 3、Sender线程发送数据 三、总结 前言 在之前的博文中,对Californium中Coap的实现进行了简要的介绍&a…

31 树的存储结构二

DIsplay() 递归显示 :图示 求树的高度时&#xff0c;递归的技巧 在递归的过程中&#xff1a;ret单独和任意一个子树的子高度比较&#xff0c;如果ret<max&#xff0c;retmax ------------- 注意&#xff1a;组织链表和子链表的【元素类型】都是TLNode* 链表都要先通过TLNod…

Matlab数学建模算法之模拟退火算法(SA)详解

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 &#x1f510;#### 防伪水印——左手の明天 ####&#x1f510; &#x1f497; 大家…

分布式事务:构建无障碍的云原生应用的完美解决方案

目录 一、前言 二、分布式事务概述 2.1 什么是分布式事务 2.2 分布式事务的挑战 2.3 分布式事务的分类 三、传统解决方案分析 3.1 两阶段提交协议&#xff08;2PC&#xff09; 3.2 三阶段提交协议&#xff08;3PC&#xff09; 3.3 补偿事务 3.4 其他传统解决方案 四…

什么是梅尼埃病?

梅尼埃病&#xff08;Meniere’s Disease&#xff0c;MD&#xff09;作为耳鼻咽喉科常见的眩晕疾病&#xff0c;是一种原因不明的、以膜迷路积水为主要病理特征的内耳疾病&#xff0c;临床表现为反复的发作性眩晕、波动性听力下降、耳鸣和耳闷胀感&#xff0c;发病率约为5~20/1…