回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)

news2024/9/27 7:19:36

回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)

目录

    • 回归预测 | MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现SSA-CNN-GRU-Attention麻雀优化卷积门控循环单元注意力机制多变量回归预测;
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.麻雀算法优化学习率,隐藏层节点,正则化系数;### 模型描述
注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-GRU-Attention多变量回归预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          
tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
       fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1379918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

XCTF:就在其中[WriteUP]

使用Wrireshark打开文件 点击‘统计’,查看协议分级 按占比分析 该数据包应该是在使用ftp协议传输文件 将其选中作为过滤器 以此将其分类,方便分析传输了什么文件 回到主界面 再点击‘分析‘选择追踪流 选择TCP Stream 绿框内是传输的所有文件&…

【排序篇2】选择排序、计数排序

目录 一、选择排序二、计数排序 一、选择排序 整体思想: 从数组中选出最小值和最大值放在起始位置,直到排序完成 具体步骤: 定义两个变量begin和end为下标,指向数组始末定义要找的最大值的下标为maxi,最小值的下标为…

Unity中URP下实现深度贴花(雾效支持和BRP适配)

文章目录 前言一、让我们的贴画支持雾效1、我们舍弃内部的MixFog方法2、使用 雾效混合因子 对最后输出颜色进行线性插值相乘 二、在Shader中,限制贴花纹理的采样方式1、申明 纹理 和 限制采样方式的采样器2、在片元着色器进行纹理采样 三、BRP适配1、C#脚本中&#…

0104 AJAX介绍

Ajax 的全称是 Asynchronous Javascript And XML (异步 JavaScript 和 XML )。 通俗的理解:在网页中利用 XMLHttpRequest 对象和服务器进行数据交互的方式,就是 Ajax Ajax 能让我们轻松实现网页与服务器之间的数据交互。 浏览器…

大语言模型下载,huggingface和modelscope加速

huggingface 下载模型 如果服务器翻墙了,不用租机器 如果服务器没翻墙,可以建议使用下面的方式 可以租一台**autodl**不用显卡的机器,一小时只有1毛钱,启动学术加速,然后下载,下载完之后,用scp…

AI的力量:微软超越苹果,成为全球最有价值公司

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

Sectigo的DV通配符https

Sectigo是近些年发展比较快速的CA认证机构,为了提升审核效率,在全国成立了审核机构,亚太审核中心的成立加快了Sectigo旗下的https证书的审核速度。Sectigo的https证书可以为网站安全提供有力支持,从而保护网站信息安全。今天就随S…

每日一题 2182. 构造限制重复的字符串(中等,贪心)

贪心,每次都尽量取大的,除非连续取的次数超出限制,此时取一个下一个字符 class Solution:def repeatLimitedString(self, s: str, repeatLimit: int) -> str:N 26count [0] * Nfor c in s:count[ord(c) - ord(a)] 1ret []i, j, m N …

极智一周 | AI大模型应用、AI发展系列、Animate Anyone、自动驾驶芯片、DRIVE And so on

欢迎关注我的公众号 [极智视界],获取我的更多技术分享 大家好,我是极智视界,带来本周的 [极智一周],关键词:AI大模型应用、AI发展系列、Animate Anyone、自动驾驶芯片、DRIVE And so on。 邀您加入我的知识星球「极智…

电脑连不上网?解决方法看这里

随着互联网的普及,电脑成为我们日常工作不可或缺的一部分。然而,有时我们可能会面临电脑连不上网的问题,这给我们的工作和娱乐带来了一些困扰。本文将介绍解决电脑无法连接网络的三种有效方法,帮助读者迅速恢复网络连接&#xff0…

FreeRtos Queue (一)

本篇主要讲队列的数据结构和初始化 一、队列的数据结构 二、队列初始化完是什么样子的 队列初始化的函数调用关系:xQueueGenericCreate->prvInitialiseNewQueue->xQueueGenericReset 所以,最终初始化完的队列是这样的 假设申请了4个消息体&…

Windows Redis图形客户端 Another Redis Desktop Manager的简单使用教程

1、 Redis官方文档 2、 Redis国内中文版文档 3、 Redis客户端 Another Redis Desktop Manager 4、连接redis服务 我直接使用的是公司搭建好的服务。连接服务需要以下几个信息: HostPortPasswordSSL 5、New Key 5.1 如何创建一个Key? 点击New k…

Java多线程并发篇----第十一篇

系列文章目录 文章目录 系列文章目录前言一、什么是悲观锁二、什么是自旋锁三、Synchronized 同步锁前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一、什么是悲观…

NVMe over TCP高性能文件存储,让未来照进现实,400us

你真的懂NVMe吗? 在说NVMe之前,我们觉得有必要先聊一聊NVM(Non-Volatile Memory),即非易失性内存。从名字上看就知道,NVM是一种类内存式(访问及寻址方式类似)的设备,它必…

小鼠的滚动疲劳仪-转棒实验|ZL-200C小鼠转棒疲劳仪

转棒实验|ZL-200C小鼠转棒疲劳仪用于检测啮齿类动物的运动功能。通过测量动物在滚筒上行走的持续时间,来评定**神经系统*病或损坏以及药物对运动协调功能和疲劳的影响。 疲劳实验中,让小鼠在不停转动的棒上运动,肌肉会很快进入疲劳状态&#…

办理美国FCC认证的意义是什么?

首先是法律法规的要求; 其次,客户认可,声誉; 最后,办理美国FCC认证的意义主要体现在以下几个方面: 保障公共利益:FCC认证要求产品符合美国联邦通信委员会制定的规定,防止不符合标准…

深度学习烦人的基础知识(2)---Nvidia-smi功率低,util高---nvidia_smi参数详解

文章目录 问题现象解释解决方案 磨刀不误砍柴工--nvidia-smi参数解读 问题 如下图所示,GPU功率很低,Util占用率高。这个训练时不正常的! 现象解释 Pwr是指GPU运行时耗电情况,如图中GPU满载是300W,目前是86W与GPU2的…

为什么不直接public,多此一举用get、set,一文给你说明白

文章目录 1. 封装性(Encapsulation)2. 验证与逻辑处理3. 计算属性(Computed Properties)4. **跟踪变化(Change Tracking)5. 懒加载与延迟初始化(Lazy Initialization)6. 兼容性与未来…

面试算法117:相似的字符串

题目 如果交换字符串X中的两个字符就能得到字符串Y,那么两个字符串X和Y相似。例如,字符串"tars"和"rats"相似(交换下标为0和2的两个字符)、字符串"rats"和"arts"相似(交换下…

服务器管理平台开发(3)- Web后端

Web服务端 整体架构采用前后端分离形式,后端使用Golang实现,参考Gin框架 1、后端服务 1.1、服务端架构 代码可参考Github开源项目:https://github.com/pbrong/hrms 1.2、服务地址 http://x.x.x.x:8000/api/v1/meta/info http://x.x.x.x:800…