AVL树(Java)

news2024/11/17 0:53:48

目录

一、什么是AVL树

二、AVL树的实现

AVL树的节点

AVL树的插入

AVL树的旋转

右单旋

左单旋

左右双旋 

右左双旋

AVL树的验证

三、AVL树的性能分析


一、什么是AVL树

在了解什么是AVL树之前,我们先回顾二叉搜索树的概念

二叉搜索树(二叉排序树),它或是一棵空树,或具有以下性质:

1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值

2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点

3. 它的左右子树也分别是二叉搜索树

根据二叉搜索树的性质,我们可以发现:

1. 二叉搜索树中最左侧的节点是树中最小的节点,最右侧的节点是树中最大的节点

2. 若采用中序遍历二叉搜索树,则可得到一个有序的序列

二叉搜索树最主要的作用就是用于进行查询:

当二叉搜索树是一颗完全二叉树时:

其查询的平均查找次数为:log_{2}^{}n

而当二叉搜索树是一颗单支树时:

其平均查找次数为:\frac{n}{2}

由此可见二叉搜索树的平均查找次数与二叉搜索树的深度成正相关,即深度越深,比较查找的次数越多。而当其是单支树时,二叉搜索树的性能就降低了,此时,能否对其进行改进,使其无论怎样插入,都能够使二叉搜索树的性能最佳?

AVL树的出现解决了这个问题。

ALV树(也就是平衡二叉查找树,简称平衡二叉树)或是一颗空树,或具有以下性质:

1. 它的左右子树高度之差(简称平衡因子)的绝对值不超过1

2. 它的左右子树都是AVL树

 

由AVL树的性质,我们可以发现:

1. 每当向AVL树中插入新的节点时,都要保证每个节点的左右子树高度差(平衡因子)的绝对值不超过1(当超过时需要对树中的节点进行调整,即降低树的高度,从而减少平均搜索长度)

2. 若一颗AVL树有n个节点,它的高度能够保持在log_{2}^{}N,因此,其搜索的时间复杂度为O(log_{2}^{}N)

二、AVL树的实现

AVL树的节点

在这里,我们通过一个内部类来实现AVL树节点的定义,通过维护节点的左孩子、右孩子和父亲节点来实现AVL树,同时定义一个平衡因子bf,通过平衡因子来判断是否需要调整树中节点。同时,我们需要定义根节点:

public class AVLTree {
    static class TreeNode{
        public int val;//节点的值
        public int bf;//平衡因子
        public TreeNode left;//左孩子
        public TreeNode right;//右孩子
        public TreeNode parent;//父亲节点
        public TreeNode(int val){
            this.val = val;
        }
    }

    public TreeNode root;//根节点
}

当前节点的平衡因子 = 右子树的高度 - 左子树的高度

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此,我们可以将AVL树的插入过程分为两步

1. 插入新的节点

2. 调整节点的平衡因子

现在我们对新的节点进行插入:

1. 当AVL树为空时,插入的节点即为根节点

2. AVL树不为空,则寻找新节点的插入位置

如何寻找新节点的插入位置?

若新节点node的值val > 当前节点cur的值val,则在cur的右子树寻找插入位置;

若node.val < cur.val,则在cur的左子树寻找插入位置;

若node.val = cur.val,则AVL树中已有该节点,插入失败,直接返回false

 在找到插入位置后,我们需要知道其父亲节点,从而进行插入,因此在查找过程中,我们可以定义当前节点cur的父亲节点parent,用于最后进行插入新节点:

    //节点的插入
    public boolean insert(int val){
        TreeNode node = new TreeNode(val);
        //若根节点为空,则直接将插入为根节点
        if(root == null){
            root = node;
            return true;
        }
        //根节点不为空,查找其插入位置
        TreeNode parent = null;
        TreeNode cur = root;
        while (cur != null){
            if(cur.val < val){
                parent = cur;
                cur = cur.right;
            }else if(cur.val > val){
                parent = cur;
                cur = cur.left;
            }else{
                return false;//若已有该节点,则插入失败,直接返回false
            }
        }
        //将节点插入
        node.parent = parent;
        cur = node;
    }     

AVL树的旋转

在插入新的节点之后,此时AVL树中某些节点的平衡因子会发生改变,因此我们需要对平衡因子进行修改,而在插入新节点后,节点的平衡因子的绝对值可能超过1,此时我们需要对节点进行调整

我们首先对平衡因子进行修改:

在插入新节点时,我们定义了其父亲节点parent,由于在这里平衡因子 = 右子树的高度 - 左子树的高度

因此,若新插入的节点在parent的左子树,则其平衡因子 -1;而若新插入的节点在parent的右子树,则平衡因子 +1

在修改完当前平衡因子后,我们需要对当前平衡因子进行检查,判断其是否符合条件:

1. 若修改后的平衡因子 = 0,则表明未修改时parent的平衡因子bf = 1 或 -1,在插入后被调整成为0,此时子树parent已经平衡了,且其高度并未发生改变,不会影响上面节点的平衡因子,因此不用再继续向上判断

2. 若修改后的平衡因子 = 1 或 -1,则表明未修改时parent的平衡因子bf = 0,在插入之后被调整成 1 或 -1,此时子树parent的高度增加,上面节点的平衡因子也会被影响,因此需要继续向上更新平衡因子

3. 若修改后的平衡因子的绝对值 > 1,此时则需要对AVL树的节点进行调整,重新使其平衡

在这里,我们通过旋转来调整节点的平衡因子,AVL树的旋转分为四种情况:

右单旋

(1)新节点插入较高左子树的左侧->右单旋

当新节点插入较高左子树的左侧时:

 此时 patent.bf = -2, cur.bf = -1,要想办法降低左子树的高度,因此对其进行调整:

将对于以parent 为根的子树

将cur作为其根;parent作为cur的右子树;cur原右子树(若有的话)作为parent的左子树,

这样重新调整后,cur和parent的平衡因子都被调整为0,此时以cur为根的子树已经平衡

因此,我们调整的步骤为:

我们设parent的左孩子cur为subL,cur的右孩子为subLR(因为要考虑cur的右孩子不存在的情况)

1. 将parent的左孩子更新为subLR,将subLR的父亲节点更新为parent

注:此时要考虑subLR为空的情况,若subLR为空,则不需要更新

2. 将subL的右孩子更新为parent,将parent的父亲节点更新为subL

注:在更新parent的父亲节点时,我们首先要将parent的父亲节点pParent保存起来,因为我们需要将subL的父亲节点更新为parent的父亲节点

3. 更新subL的父亲节点,

若parent原为根节点,此时需要将根节点更新为subL,同时将subL的父亲节点更新为null;

若parent原不为根节点,则更新subL的父亲节点为pParent,同时需要更新pParent的孩子节点,此时需要判断parent为pParent的左孩子还是右孩子,并更新

右单旋代码:

//右单旋
private void rotateRight(TreeNode parent){
    TreeNode subL = parent.left;
    TreeNode subLR = subL.right;

    parent.left = subLR;
    if(subLR != null){//只有当subLR不为空时,才能修改其父亲节点
        subLR.parent = parent;
    }
    
    subL.right = parent;
    //在修改parent的父亲节点时,必须先记录其父亲节点,以便修改subL的父亲节点
    TreeNode pParent = parent.parent;
    parent.parent = subL;
    //判断subL是否被修改为根节点
    if(parent == root){
        root = subL;
        root.parent = null;
    }else {
        subL.parent = pParent;
        //判断是左子树还是右子树
        if(pParent.left == parent){
            pParent.left = subL;
        }else {
            parent.right = subL;
        }
    }
    //修改平衡因子
    subL.bf = 0;
    parent.bf = 0;
}

左单旋

新节点插入较高右子树的右侧->左单旋

左单旋与右单旋类似:

当新的节点插入到较高右子树的右侧时:

此时 parent.bf = 2, cur.bf = 1,要想办法降低右子树的高度,对以parent为根的子树进行调整:

设parent的右孩子cur为subR,subR的左孩子为subRL(要考虑subR的左孩子为空的情况)

1. 将parent的右孩子更新为subRL,将subRL的父亲节点更新为parent(若subRL不为空)

2. 将subR的左孩子更新为parent,保存parent的父亲节点pParent,再更新parent的父亲节点为subR

3. 更新subR的父亲节点,若parent原为根节点,则更新根节点为subR,并将其父亲节点更新为null;若parent原不为根节点,则更新subR的父亲节点为pParent,判断parent原为pParent的左孩子还是右孩子,并将subR更新为pParent的孩子节点

左单旋代码:

//左单旋
private void rotateLeft(TreeNode parent){
    TreeNode subR = parent.right;
    TreeNode subRL = subR.left;
    
    parent.right = subRL;
    if(subRL != null){//只有当subRL不为空时,才能修改其父亲节点
        subRL.parent = parent;
    }
    
    subR.left = parent;
    //在修改parent父亲节点前将其进行记录,以便后续修改subR的父亲节点
    TreeNode pParent = parent.parent;
    parent.parent = subR;
    //判断subR是否被修改为根节点
    if(parent == root){
        root = subR;
        root.parent = null;
    }else {
        //判断是其左子树还是右子树
        if(pParent.left == parent){
            pParent.left = subR;
        }else{
            pParent.right = subR;
        }
        subR.parent = pParent;
    }
    //修改平衡因子
    subR.bf = 0;
    parent.bf = 0;
}

左右双旋 

新节点插入较高左子树的右侧->左右双旋(先左单旋再右单旋)

当新的节点插入较高左子树的右侧时:

此时 parent.bf = -2, cur.bf = 1,此时对于以parent为根的子树,无论是进行右单旋,还是进行左单旋,都不能使其平衡。因此,此时不能只进行一次旋转,而需要进行两次旋转:
首先,我们需要对以cur为根的子树进行一次左单旋:

然后再对以parent为根的子树进行一次右单旋:

此时调整后的子树达到平衡状态,由于进行的左单旋和右单旋会更改其中节点的平衡因子,因此我们需要对被修改的平衡因子进行重新调整:

 平衡因子被修改的节点有:parent、parent的左孩子subL、subL的右孩子subLR

它们的平衡因子都被修改为0,

然而经过两次旋转后,它们的平衡因子并不都为0

通过观察我们发现,当subLR的平衡因子原为-1时,经过调整后,parent的平衡更新为1

 当subLR的平衡因子原为1时,经过调整后,subL的平衡因子被更新为-1:

当subLR的平衡因子原为0时,经过调整后,parent、subL和subLR的平衡因子都为0:

因此,我们根据subLR原平衡因子来调整旋转两次之后的平衡因子

为什么subLR的平衡因子不同,两次旋转后的平衡因子也不同呢?

当subLR的平衡因子为-1时,经过一次左单旋,subRL的左子树变为subR的右子树,由于subR的平衡因子为1,经过这次左旋后,其右子树的高度减一(少了subRL),此时subR的平衡因子变为0,且subRL变为subR的父亲节点。

当subLR变为subR的父亲节点时,其平衡因子变为 -2 ,这是因为subRL的原平衡因子为-1,经过一次左旋后,其左子树高度增加1(增加了subR),右子树高度不变,因此平衡因子变为 -2。

而parent的平衡因子不变,仍是 -2,这是因为在经过一次左单旋后,其右子树高度不变,虽其左孩子变为了subRL,但其高度未改变,因此parent的平衡因子不变

其过程更新过程如下图:

此时,我们假设subLR的左子树高度为m,由于其平衡因子为-2,则subLR的右子树高度为m-2,而parent的左子树高度为m+1,parent的右子树高度为m-1

当进行一次右旋后,由于subR的左右子树不变,因此其平衡因子仍为0

而parent变为subLR的右子树,且其左子树变为subLR的右子树,parent的右子树高度未改变,任为m - 1,而parent的左子树变为subLR的右子树,因此其高度变为m-2,则parent子树的高度为m-1,平衡因子变为 1

subLR的左子树为改变,高度任为m,而右子树变为以parent为根的子树,parent子树的高度为m-1,再加上parent,则为m,因此subLR的平衡因子变为0

当subLR的平衡因子为1和为0时也是同样的分析过程,大家可自行进行分析,这里就不再进行分析了

左右双旋代码:

//左右双旋
private void rotateLR(TreeNode parent){
    TreeNode subL = parent.left;
    TreeNode subLR = subL.right;
    //记录subLR平衡因子
    int bf = subLR.bf;
    rotateLeft(parent.left);//先左旋
    rotateRight(parent);//再右旋
    //修改平衡因子
    if(bf == -1){
        parent.bf = 1;
    }else if(bf == 1){
        subL.bf = -1;
    }
}

右左双旋

新节点插入较高右子树的左侧->右左双旋(先右单旋再左单旋)

右左双旋与左右双旋的情况类似

当新节点插入较高右子树的左侧时:

此时 parent.bf = 2, cur.bf = -1,仍要进行两次旋转,才能将以parent为根的子树调整为平衡的子树

此时要先对其进行右旋:

 再对其进行左旋:

最后,我们再根据原subRL的平衡因子对平衡因子对其修改:

当subRL原平衡因子为1时,更新后的parent的平衡因子为-1

当subRL原平衡因子为-1时,更新后的subR的平衡因子为1

当subRL原平衡因子为0时,更新后parent、subR和subRL的平衡因子都为0

右左双旋的代码为:

//右左双旋
private void rotateRL(TreeNode parent){
    TreeNode subR = parent.right;
    TreeNode subRL = subR.left;
    //记录subRL的平衡因子
    int bf = subRL.bf;
    rotateRight(subR);//先右旋
    rotateLeft(parent);//再左旋
    //修改平衡因子
    if(bf == 1){
        parent.bf = -1;
    }else if(bf == -1){
        subR.bf = 1;
    }
}

由上述四种旋转过程可知:经过旋转后,都能使节点的平衡因子到达平衡,此时无需再向上调整,因此修改平衡因子的代码为:

        //修改平衡因子
        //平衡因子 = 右子树高度 - 左子树高度
        while (parent != null){
            //判断cur是parent的左还是右,从而决定其平衡因子是++还是--
            if(cur == parent.right){
                parent.bf++;
            }else {
                parent.bf--;
            }

            //检查当前平衡因子 判断是否符合条件(-1 0 1)
            if(parent.bf == 0){
                //已经平衡
                break;
            }else if(parent.bf == 1 || parent.bf == -1){
                //需要继续向上判断是否需要修改平衡因子
                cur = parent;
                parent = cur.parent;
            }else {
                //不平衡,需要进行旋转,使其平衡
                if(parent.bf == 2){//右树高,需要左旋,从而降低右树高度
                    if(cur.bf == 1){
                       //直接左旋
                        rotateLeft(parent);
                    }else {
                        //右左双旋
                        rotateRL(parent);
                    }

                }else {//左树高,需要右旋,从而降低左树高度
                    if(cur.bf == -1){
                        //直接右旋
                        rotateRight(parent);
                    }else {
                        //左右双旋
                        rotateLR(parent);
                    }
                }
                //旋转之后,平衡
                break;
            }
        }

AVL树的验证

在我们插入节点后,如何验证我们创建出的树是否是AVL树?

AVL树是高度平衡的二叉搜索树,其平衡因子的绝对值不超过1,能否通过节点的平衡因子来验证?

不能通过平衡因子来验证,因为平衡因子是我们通过计算得出的,若我们在计算时出现错误,那我们通过平衡因子验证的结果也是错误的(例如在左右双旋时,未在最后修改平衡因子,则此时计算的平衡因子不完全正确)

 那么我们应该如何进行验证呢?

首先,AVL树也是二叉搜索树,二叉搜索树中序遍历的结果是有序的,因此我们可以通过中序遍历来验证

    public void inorder(TreeNode root) {
        if(root == null) return;
        inorder(root.left);
        System.out.print(root.val+" ");
        inorder(root.right);
    }

其次,AVL树节点的平衡因子绝对值不超过1,即左右子树的高度差不超过1,我们可以通过计算左右子树的高度差来判断树是否是高度平衡的,同时,通过比较计算出的高度差和平衡因子,我们也可以验证当前节点的平衡因子是否正确

    private int height(TreeNode root) {//计算子树高度
        if(root == null) return 0;
        int leftH = height(root.left);
        int rightH = height(root.right);

        return leftH > rightH ? leftH+1 : rightH+1;
    }

    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        int leftH = height(root.left);
        int rightH = height(root.right);
        //判断平衡因子是否正确
        if(rightH-leftH != root.bf) {
            System.out.println("节点:"+root.val+" 平衡因子异常");
            return false;
        }
        //判断左右子树高度差绝对值是否不超过1
        return Math.abs(leftH-rightH) <= 1
                && isBalanced(root.left)
                && isBalanced(root.right);
    }

完整代码:

public class AVLTree {
    static class TreeNode{
        public int val;//节点的值
        public int bf;//平衡因子
        public TreeNode left;//左孩子
        public TreeNode right;//右孩子
        public TreeNode parent;//父亲节点
        public TreeNode(int val){
            this.val = val;
        }
    }

    public TreeNode root;//根节点

    //节点的插入
    public boolean insert(int val) {
        TreeNode node = new TreeNode(val);
        //若根节点为空,则直接将插入为根节点
        if (root == null) {
            root = node;
            return true;
        }
        //根节点不为空,查找其插入位置
        TreeNode parent = null;
        TreeNode cur = root;
        while (cur != null) {
            if (cur.val < val) {
                parent = cur;
                cur = cur.right;
            } else if (cur.val > val) {
                parent = cur;
                cur = cur.left;
            } else {
                return false;//若已有该节点,则插入失败,直接返回false
            }
        }
        //将节点插入
        node.parent = parent;
        cur = node;

        //修改平衡因子
        //平衡因子 = 右子树高度 - 左子树高度
        while (parent != null){
            //判断cur是parent的左还是右,从而决定其平衡因子是++还是--
            if(cur == parent.right){
                parent.bf++;
            }else {
                parent.bf--;
            }

            //检查当前平衡因子 判断是否符合条件(-1 0 1)
            if(parent.bf == 0){
                //已经平衡
                break;
            }else if(parent.bf == 1 || parent.bf == -1){
                //需要继续向上判断是否需要修改平衡因子
                cur = parent;
                parent = cur.parent;
            }else {
                //不平衡,需要进行旋转,使其平衡
                if(parent.bf == 2){//右树高,需要左旋,从而降低右树高度
                    if(cur.bf == 1){
                       //直接左旋
                        rotateLeft(parent);
                    }else {
                        //先右旋,再左旋
                        rotateRL(parent);
                    }

                }else {//左树高,需要右旋,从而降低左树高度
                    if(cur.bf == -1){
                        //直接右旋
                        rotateRight(parent);
                    }else {
                        //先左选,再右旋
                        rotateLR(parent);
                    }
                }
                //经过旋转之后,就平衡
                break;
            }
        }
        return true;
    }
    //左单旋
    private void rotateLeft(TreeNode parent){
        TreeNode subR = parent.right;
        TreeNode subRL = subR.left;

        parent.right = subRL;
        if(subRL != null){//只有当subRL不为空时,才能修改其父亲节点
            subRL.parent = parent;
        }

        subR.left = parent;
        //在修改parent父亲节点前将其进行记录,以便后续修改subR的父亲节点
        TreeNode pParent = parent.parent;
        parent.parent = subR;
        //判断subR是否被修改为根节点
        if(parent == root){
            root = subR;
            root.parent = null;
        }else {
            //判断是其左子树还是右子树
            if(pParent.left == parent){
                pParent.left = subR;
            }else{
                pParent.right = subR;
            }
            subR.parent = pParent;
        }
        //修改平衡因子
        subR.bf = 0;
        parent.bf = 0;
    }

    //右单旋
    private void rotateRight(TreeNode parent){
        TreeNode subL = parent.left;
        TreeNode subLR = subL.right;

        parent.left = subLR;
        if(subLR != null){//只有当subLR不为空时,才能修改其父亲节点
            subLR.parent = parent;
        }

        subL.right = parent;
        //在修改parent的父亲节点时,必须先记录其父亲节点,以便修改subL的父亲节点
        TreeNode pParent = parent.parent;
        parent.parent = subL;
        //判断subL是否被修改为根节点
        if(parent == root){
            root = subL;
            root.parent = null;
        }else {
            subL.parent = pParent;
            //判断是左子树还是右子树
            if(pParent.left == parent){
                pParent.left = subL;
            }else {
                parent.right = subL;
            }
        }
        //修改平衡因子
        subL.bf = 0;
        parent.bf = 0;
    }

    //左右双旋
    private void rotateLR(TreeNode parent){
        TreeNode subL = parent.left;
        TreeNode subLR = subL.right;
        //记录subLR平衡因子
        int bf = subLR.bf;
        rotateLeft(parent.left);//先左旋
        rotateRight(parent);//再右旋
        //修改平衡因子
        if(bf == -1){
            parent.bf = 1;
        }else if(bf == 1){
            subL.bf = -1;
        }
    }

    //右左双旋
    private void rotateRL(TreeNode parent){
        TreeNode subR = parent.right;
        TreeNode subRL = subR.left;
        //记录subRL的平衡因子
        int bf = subRL.bf;
        rotateRight(subR);//先右旋
        rotateLeft(parent);//再左旋
        //修改平衡因子
        if(bf == 1){
            parent.bf = -1;
        }else if(bf == -1){
            subR.bf = 1;
        }
    }

    //验证
    public void inorder(TreeNode root) {//中序遍历
        if (root == null) return;
        inorder(root.left);
        System.out.print(root.val + " ");
        inorder(root.right);
    }

    private int height(TreeNode root) {//计算子树高度
        if(root == null) return 0;
        int leftH = height(root.left);
        int rightH = height(root.right);

        return leftH > rightH ? leftH+1 : rightH+1;
    }

    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        int leftH = height(root.left);
        int rightH = height(root.right);
        //判断平衡因子是否正确
        if(rightH-leftH != root.bf) {
            System.out.println("节点:"+root.val+" 平衡因子异常");
            return false;
        }
        //判断左右子树高度差绝对值是否不超过1
        return Math.abs(leftH-rightH) <= 1
                && isBalanced(root.left)
                && isBalanced(root.right);
    }
}

三、AVL树的性能分析

  AVL树是一颗绝对平衡的二叉搜索树,要求每个节点的左右子树高度差的绝对值都不超过1,这样能够保证查询时的高效,即查询的时间复杂度为O(log_{2}N)。但当对AVL树进行一些结构的修改操作时,性能就会比较低下(在插入时为了保持其绝对平衡,就需要进行旋转)。因此,若需要一种查询高效且有序的数据结构,且数据的个数为静态的(不改变),可以考虑使用AVL树,但若是其经常进行修改,就不太适合使用AVL树。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1379236.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用递归将list转换成tree

在产品研发时遇到这样一个问题&#xff0c;对于省市区县这类三级联动的数据&#xff0c;前端插件需要一次把数据全部返回&#xff0c;单纯的使用接口查询字节的没办法满足要求。 如果一次把数据全部返回&#xff0c;前端使用起来很麻烦需要一条一条的进行查找。 常规的使用方…

基于SPI的插件式开发实现方案之@AutoService+ServiceLoader介绍及Dolphinscheduler中的实际应用

1.插件化开发概述 插件化开发模式正在很多编程语言或技术框架中得以广泛的应用实践&#xff0c;比如大家熟悉的jenkins&#xff0c;docker可视化管理平台rancher&#xff0c;以及日常编码使用的编辑器idea&#xff0c;vscode等。 实现服务模块之间解耦的方式有很多&#xff0…

【漏洞复现】Apache Tomcat AJP文件包含漏洞(CVE-2020-1938)

Nx01 产品简介 Apache Tomcat 是一个免费的开源 Web 应用服务器&#xff0c;在中小型企业和个人开发用户中有着广泛的应用。 Nx02 漏洞描述 默认情况下&#xff0c;Apache Tomcat会开启AJP连接器&#xff0c;由于AJP服务&#xff08;8009端口&#xff09;存在文件包含缺陷&…

Spring Boot - Application Events 的发布顺序_AvailabilityChangeEvent

文章目录 Pre概述Code源码分析 Pre Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent 概述 Spring Boot 的广播机制是基于观察者模式实现的&#xff0c;它允许在 Spring 应用程序中发布和监听事件。这种机制的主要目的是为了实现解耦&#…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票帖子管理实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

数据仓库研发规范

数据仓库研发规范 本文将介绍数据仓库研发规范的阶段规划、角色职责和整体流程。 在大数据时代&#xff0c;规范地进行数据资产管理已成为推动互联网、大数据、人工智能和实体经济深度融合的必要条件。贴近业务属性、兼顾研发各阶段要点的研发规范&#xff0c;可以切实提高研…

Handsfree_ros_imu:ROS机器人IMU模块的get_imu_rpy.py文件学习记录

上一篇博客写了关于Handsfree_ros_imu&#xff1a;ROS机器人IMU模块ARHS姿态传感器&#xff08;A9&#xff09;Liunx系统Ubuntu20.04学习启动和运行教程&#xff1a; https://blog.csdn.net/qq_54900679/article/details/135539176?spm1001.2014.3001.5502 这次带来get_imu_r…

解决虚拟机的网络图标不见之问题

在WIN11中&#xff0c;启动虚拟机后&#xff0c;发现网络图标不见了&#xff0c;见下图&#xff1a; 1、打开虚拟机终端 输入“sudo server network-manager stop”&#xff0c;停止网络管理器 输入“cd /回车” &#xff0c; 切换到根目录 输入“cd var回车” &#xff0c;…

从零开始怎么做好产品宣传册

​随着市场竞争的日益激烈&#xff0c;产品宣传册作为企业与消费者之间的桥梁&#xff0c;其重要性日益凸显。一份优秀的宣传册不仅能提升企业的品牌形象&#xff0c;还能帮助企业更好地推广产品&#xff0c;吸引潜在客户。然而&#xff0c;很多企业在制作宣传册时却常常无从下…

webpack原理和逆向实战

文章目录 什么是webpackwebpack基本原理webpack代码分析webpack代码抠取webpack全模块自吐webpack自动扣取总结 什么是webpack webpack是一个现代 JavaScript 应用程序的静态模块打包器(module bundler)&#xff0c;负责分析翻译压缩打包代码。 上面的官网的一张示例图。 web…

了解及掌握二维数组

第一题: 题目&#xff08;单对角线和&#xff09;&#xff1a; 分析&#xff1a; 用结构体的话&#xff0c;太麻烦了&#xff0c;专业一点&#xff0c;用本该属于它的知识点来解决它。 代码&#xff1a; #include <iostream> using namespace std; int main() { int…

设计模式—行为型模式之状态模式

设计模式—行为型模式之状态模式 状态&#xff08;State&#xff09;模式&#xff1a;对有状态的对象&#xff0c;把复杂的“判断逻辑”提取到不同的状态对象中&#xff0c;允许状态对象在其内部状态发生改变时改变其行为。 状态模式包含以下主要角色&#xff1a; 环境类&am…

如何使用iPad通过Code App+cpolar实现公网地址远程访问vscode

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” 文章目录 1. 在iPad下载Code APP2.安装cpolar内网穿透2.1 cpolar 安装2.2 创建TCP隧道 3. iPad远程vscode4. …

基于多智能体点对点转换的分布式模型预测控制

matlab2020正常运行 基于多智能体点对点转换的分布式模型预测控制资源-CSDN文库

资源三角形

美国哈佛大学的研究小组提出了著名的资源三角形&#xff1a;没有物质&#xff0c;什么也不存在&#xff1b;没有能量&#xff0c;什么也不会发生&#xff1b;没有信息&#xff0c;任何事物都没有意义。物质、能量和信息是相互有区别的&#xff0c;是人类社会赖以生存、发展的三…

7 - MySQL主从同步|主从同步模式

MySQL主从同步&#xff5c;主从同步模式 MySQL主从同步主从同步介绍主从同步工作过程主从同步结构模式配置主从同步一主一从同步结构一主多从同步结构主从从同步结构主主同步结构 主从同步模式主从同步结构模式复制模式 MySQL主从同步 主从同步介绍 存储数据的服务结构 主服务…

数据结构与算法教程,数据结构C语言版教程!(第三部分、栈(Stack)和队列(Queue)详解)五

第三部分、栈(Stack)和队列(Queue)详解 栈和队列&#xff0c;严格意义上来说&#xff0c;也属于线性表&#xff0c;因为它们也都用于存储逻辑关系为 "一对一" 的数据&#xff0c;但由于它们比较特殊&#xff0c;因此将其单独作为一章&#xff0c;做重点讲解。 使用栈…

vscode+opencv基础用法学习1

案例1&#xff1a;读取图片信息 如果是使用云服务器的话&#xff0c;由于图形界面的问题&#xff0c;使用cv::show来显示图片会报错 // 图片的读取和显示 // 导入opencv头文件 #include "opencv2/opencv.hpp" #include <iostream>int main(int argc, char** …

数据仓库 Apache Hive

一、数据分析 1、数据仓库 数据仓库&#xff08;英语&#xff1a;Data Warehouse&#xff0c;简称数仓、DW&#xff09;&#xff0c;是一个用于存储、分析、报告的数据系统。 数据仓库的目的是构建面向分析的集成化数据环境&#xff0c;分析结果为企业提供决策支持&#xff08…

js:使用canvas画一个半圆

背景 需求需要画一个半圆&#xff0c;或者多半圆&#xff0c;其实一下子就能想到 canvas 中的圆弧&#xff0c;核心使用 context.arc context.arc(x,y,r,sAngle,eAngle,counterclockwise)接下来我们看看示例 例一 <!DOCTYPE html> <html lang"en"> &…