书生·浦语大模型--第二节课笔记

news2024/11/17 7:53:14

书生·浦语大模型--第二节课

  • 大模型及InternLM基本介绍
  • 实战部分
    • demo部署
      • 准备工作
      • 模型下载
      • 代码准备
      • 终端运行
      • web demo 运行
    • Lagent 智能体工具调用 Demo
      • 准备工作
      • Demo 运行
    • 浦语·灵笔图文理解创作 Demo
      • 环境准备
      • 下载模型
      • 下载代码
      • 运行

大模型及InternLM基本介绍

大模型

  • 定义:参数量巨大、拥有庞大计算能力和参数规模的模型
  • 特点:大量数据训练、数十亿甚至千亿数据、惊人性能

InternLM系列

  • InternLM:轻量级训练框架
  • Lagent:轻量级、开源的基于大语言模型得到智能体框架,将大语言模型转变为多种智能体
  • 浦语灵笔:视觉语言大模型,出色的图文理解和图文创作能力
  • InternLM-7B:70亿参数,支持8k token

实战部分

demo部署

准备工作

白嫖A100
在这里插入图片描述

  • 克隆环境
bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
bash /root/share/install_conda_env_internlm_base.sh internlm-demo  # 执行该脚本文件来安装项目实验环境
  • 激活环境
conda activate internlm-demo
  • 安装依赖
# 升级pip
python -m pip install --upgrade pip

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

  • 复制模型
mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

代码准备

  • clone代码
cd /root/code
git clone https://gitee.com/internlm/InternLM.git

保证版本一致

cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

终端运行

/root/code/InternLM 目录下新建一个 cli_demo.py 文件,将以下代码填入其中

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("User  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break
    response, history = model.chat(tokenizer, input_text, history=messages)
    messages.append((input_text, response))
    print(f"robot >>> {response}")

运行代码

python /root/code/InternLM/cli_demo.py

在这里插入图片描述

web demo 运行

配置SSH本地端口,即可在网页上使用,效果如图
在本地运行,

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 34683

并在浏览器打开

http://127.0.0.1:6006

在服务器端,运行

bash
conda activate internlm-demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
cd /root/code/InternLM
streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

效果如图
在这里插入图片描述

Lagent 智能体工具调用 Demo

准备工作

环境准备

# 升级pip
python -m pip install --upgrade pip

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

模型下载

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

安装 Lagent

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

替换/root/code/lagent/examples/react_web_demo.py的代码

import copy
import os

import streamlit as st
from streamlit.logger import get_logger

from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.agents.react import ReAct
from lagent.llms import GPTAPI
from lagent.llms.huggingface import HFTransformerCasualLM


class SessionState:

    def init_state(self):
        """Initialize session state variables."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []

        #action_list = [PythonInterpreter(), GoogleSearch()]
        action_list = [PythonInterpreter()]
        st.session_state['plugin_map'] = {
            action.name: action
            for action in action_list
        }
        st.session_state['model_map'] = {}
        st.session_state['model_selected'] = None
        st.session_state['plugin_actions'] = set()

    def clear_state(self):
        """Clear the existing session state."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._session_history = []


class StreamlitUI:

    def __init__(self, session_state: SessionState):
        self.init_streamlit()
        self.session_state = session_state

    def init_streamlit(self):
        """Initialize Streamlit's UI settings."""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
        st.sidebar.title('模型控制')

    def setup_sidebar(self):
        """Setup the sidebar for model and plugin selection."""
        model_name = st.sidebar.selectbox(
            '模型选择:', options=['gpt-3.5-turbo','internlm'])
        if model_name != st.session_state['model_selected']:
            model = self.init_model(model_name)
            self.session_state.clear_state()
            st.session_state['model_selected'] = model_name
            if 'chatbot' in st.session_state:
                del st.session_state['chatbot']
        else:
            model = st.session_state['model_map'][model_name]

        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[list(st.session_state['plugin_map'].keys())[0]],
        )

        plugin_action = [
            st.session_state['plugin_map'][name] for name in plugin_name
        ]
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._action_executor = ActionExecutor(
                actions=plugin_action)
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()
        uploaded_file = st.sidebar.file_uploader(
            '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])
        return model_name, model, plugin_action, uploaded_file

    def init_model(self, option):
        """Initialize the model based on the selected option."""
        if option not in st.session_state['model_map']:
            if option.startswith('gpt'):
                st.session_state['model_map'][option] = GPTAPI(
                    model_type=option)
            else:
                st.session_state['model_map'][option] = HFTransformerCasualLM(
                    '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')
        return st.session_state['model_map'][option]

    def initialize_chatbot(self, model, plugin_action):
        """Initialize the chatbot with the given model and plugin actions."""
        return ReAct(
            llm=model, action_executor=ActionExecutor(actions=plugin_action))

    def render_user(self, prompt: str):
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        with st.chat_message('assistant'):
            for action in agent_return.actions:
                if (action):
                    self.render_action(action)
            st.markdown(agent_return.response)

    def render_action(self, action):
        with st.expander(action.type, expanded=True):
            st.markdown(
                "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插    件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501
                + action.type + '</span></p>',
                unsafe_allow_html=True)
            st.markdown(
                "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>"  # noqa E501
                + action.thought + '</span></p>',
                unsafe_allow_html=True)
            if (isinstance(action.args, dict) and 'text' in action.args):
                st.markdown(
                    "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501
                    unsafe_allow_html=True)
                st.markdown(action.args['text'])
            self.render_action_results(action)

    def render_action_results(self, action):
        """Render the results of action, including text, images, videos, and
        audios."""
        if (isinstance(action.result, dict)):
            st.markdown(
                "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>",  # noqa E501
                unsafe_allow_html=True)
            if 'text' in action.result:
                st.markdown(
                    "<p style='text-align: left;'>" + action.result['text'] +
                    '</p>',
                    unsafe_allow_html=True)
            if 'image' in action.result:
                image_path = action.result['image']
                image_data = open(image_path, 'rb').read()
                st.image(image_data, caption='Generated Image')
            if 'video' in action.result:
                video_data = action.result['video']
                video_data = open(video_data, 'rb').read()
                st.video(video_data)
            if 'audio' in action.result:
                audio_data = action.result['audio']
                audio_data = open(audio_data, 'rb').read()
                st.audio(audio_data)


def main():
    logger = get_logger(__name__)
    # Initialize Streamlit UI and setup sidebar
    if 'ui' not in st.session_state:
        session_state = SessionState()
        session_state.init_state()
        st.session_state['ui'] = StreamlitUI(session_state)

    else:
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
    model_name, model, plugin_action, uploaded_file = st.session_state[
        'ui'].setup_sidebar()

    # Initialize chatbot if it is not already initialized
    # or if the model has changed
    if 'chatbot' not in st.session_state or model != st.session_state[
            'chatbot']._llm:
        st.session_state['chatbot'] = st.session_state[
            'ui'].initialize_chatbot(model, plugin_action)

    for prompt, agent_return in zip(st.session_state['user'],
                                    st.session_state['assistant']):
        st.session_state['ui'].render_user(prompt)
        st.session_state['ui'].render_assistant(agent_return)
    # User input form at the bottom (this part will be at the bottom)
    # with st.form(key='my_form', clear_on_submit=True):

    if user_input := st.chat_input(''):
        st.session_state['ui'].render_user(user_input)
        st.session_state['user'].append(user_input)
        # Add file uploader to sidebar
        if uploaded_file:
            file_bytes = uploaded_file.read()
            file_type = uploaded_file.type
            if 'image' in file_type:
                st.image(file_bytes, caption='Uploaded Image')
            elif 'video' in file_type:
                st.video(file_bytes, caption='Uploaded Video')
            elif 'audio' in file_type:
                st.audio(file_bytes, caption='Uploaded Audio')
            # Save the file to a temporary location and get the path
            file_path = os.path.join(root_dir, uploaded_file.name)
            with open(file_path, 'wb') as tmpfile:
                tmpfile.write(file_bytes)
            st.write(f'File saved at: {file_path}')
            user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(
                file_path=file_path, user_input=user_input)
        agent_return = st.session_state['chatbot'].chat(user_input)
        st.session_state['assistant'].append(copy.deepcopy(agent_return))
        logger.info(agent_return.inner_steps)
        st.session_state['ui'].render_assistant(agent_return)


if __name__ == '__main__':
    root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    root_dir = os.path.join(root_dir, 'tmp_dir')
    os.makedirs(root_dir, exist_ok=True)
    main()

Demo 运行

服务器端输入

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

本地同样采用ssh端口访问
服务器端输入
streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

浦语·灵笔图文理解创作 Demo

环境准备

需要重新开一个服务器A100(1/4)*2
激活虚拟环境

/root/share/install_conda_env_internlm_base.sh xcomposer-demo
conda activate xcomposer-demo
pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate

下载模型

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory

下载代码

cd /root/code
git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致

运行

cd /root/code/InternLM-XComposer
python examples/web_demo.py  \
    --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
    --num_gpus 1 \
    --port 6006

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1379139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构中的一棵树

一、树是什么&#xff1f; 有根有枝叶便是树&#xff01;根只有一个&#xff0c;枝叶可以有&#xff0c;也可以没有&#xff0c;可以有一个&#xff0c;也可以有很多。 就像这样&#xff1a; 嗯&#xff0c;应该是这样&#xff1a; 二、一些概念 1、高度 树有多高&#x…

案例117:基于微信小程序的新闻资讯系统设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder …

Spring Boot - Application Events 的发布顺序_ApplicationStartedEvent

文章目录 Pre概述Code源码分析 Pre Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent 概述 Spring Boot 的广播机制是基于观察者模式实现的&#xff0c;它允许在 Spring 应用程序中发布和监听事件。这种机制的主要目的是为了实现解耦&#…

FineBI报表页面大屏小屏自适应显示问题

大屏正常显示 显示正常 小屏BI自适应显示 存在遮挡字体情况 小屏浏览器缩放显示 等比缩放后显示正常

[开发语言][c++][python]:C++与Python中的赋值、浅拷贝与深拷贝

C与Python中的赋值、浅拷贝与深拷贝 1. Python中的赋值、浅拷贝、深拷贝2. C中的赋值、浅拷贝、深拷贝2.1 概念2.2 示例&#xff1a;从例子中理解1) 不可变对象的赋值、深拷贝、浅拷贝2) 可变对象的赋值、浅拷贝与深拷贝3) **可变对象深浅拷贝(外层、内层改变元素)** 写在前面&…

Ubuntu server配置ssh远程登录

使用如下命令进行安装 apt-get install ssh 安装好后启动 service ssh start 然后查看运行状态 然后用本机ping虚拟机 关闭本机和虚拟机防火墙 ufw disable 然后打开Xshell进行连接

删除的数据恢复

1回收站恢复 1.1回收站删除 新手删除是通过del键或者鼠标右键删除,这种删除是并不是真正的删除,而是放到了回收站 1.2回收站的数据恢复 回收站的数据,你要恢复那个直接右键还原即可,删除到回收站的数据并不能称得上是删除,回收站的本质也是一个文件夹,只不过是个特殊的文件…

少儿编程 2023年12月电子学会图形化编程等级考试Scratch二级真题解析(判断题)

2023年12月scratch编程等级考试二级真题 判断题(共10题,每题2分,共20分) 26、声音Medieval1的长度是9.68秒,运行下列程序1或程序2都能实现,播放声音2秒后,声音停止角色移动100步 答案:对 考点分析:考查积木综合使用,重点考查声音积木的使用 程序1中用的是等待播完…

系统存储架构升级分享 | 京东云技术团队

一、业务背景 系统业务功能&#xff1a;系统内部进行数据处理及整合, 对外部系统提供结果数据的初始化(写)及查询数据结果服务。 系统网络架构: 部署架构对切量上线的影响 - 内部管理系统上线对其他系统的读业务无影响分布式缓存可进行单独扩容, 与存储及查询功能升级无关通过…

掌握 Vue 响应式系统,让数据驱动视图(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

分析一个项目(微信小程序篇)三

目录 接下来分析接口方面&#xff1a; home接口&#xff1a; categories接口&#xff1a; details接口&#xff1a; login接口&#xff1a; 分析一个项目讲究的是如何进行对项目的解析分解&#xff0c;进一步了解项目的整体结构&#xff0c;熟悉项目的结构&#xff0c;能够…

impala元数据自动刷新

一.操作步骤 进入CM界面 > Hive > 配置 > 搜索 启用数据库中的存储通知(英文界面搜索&#xff1a;Enable Stored Notifications in Database)&#xff0c;并且勾选&#xff0c;注意一定要勾选&#xff0c;配置后面的配置不生效。数据库通知的保留时间默认为2天&#…

2-认识小程序项目

基本结构 myapp├─miniprogram┊ └──pages┊ ┊ └──index┊ ┊ ┊ ├──index.json┊ ┊ ┊ ├──index.ts┊ ┊ ┊ ├──index.wxml┊ ┊ ┊ └──index.wxss┊ ┊ └──logs┊ ┊ ├──index.json┊ ┊ ├──index.ts┊ ┊ ├…

评论转换输出 - 华为OD统一考试

OD统一考试 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 在一个博客网站上&#xff0c;每篇博客都有评论。每一条评论都是一个非空英文字母字符串。 评论具有树状结构&#xff0c;除了根评论外&#xff0c;每个评论都有一个父评论。当评论保存时&am…

VMware workstation安装MX-23.1虚拟机并配置网络

VMware workstation安装MX-23.1虚拟机并配置网络 MX Linux是基于Debian稳定分支的面向桌面的Linux发行&#xff0c;采用Xfce作为缺省桌面&#xff0c;是一份中量级操作系统。该文档适用于在VMware workstation平台安装MX-23.1虚拟机。 1.安装准备 1.1安装平台 Windows 11 …

个人网站制作 Part 3 用JS添加高级交互(表单验证、动态内容更新) | Web开发项目

文章目录 &#x1f469;‍&#x1f4bb; 基础Web开发练手项目系列&#xff1a;个人网站制作&#x1f680; 使用JavaScript进行交互&#x1f528;表单验证&#x1f527;步骤 1: 添加JavaScript文件&#x1f527;步骤 2: 更新表单HTML &#x1f528;动态内容更新&#x1f527;步骤…

用js做个转盘

样式 <style>.wheel {position: relative;width: 400px;height: 400px;border: 1px solid black;border-radius: 50%;overflow: hidden;margin: auto;}.slice {position: absolute;left: 0;top: 0;width: 0;height: 0;border: 200px solid red;/* border-width: 100px 10…

Python - 操作 docx

文章目录 使用库 : python-docx 官方文档&#xff1a;https://python-docx.readthedocs.io 安装 pip install python-docx提取 docx from docx import Documentdoc Document(file_path) text "" for para in doc.paragraphs:text para.text "\n"创建…

小程序系列-5.WXML 模板语法

一、数据绑定 1、在 data 中定义页面的数据 动态绑定内容&#xff1a; 动态绑定属性&#xff1a; 2. Mustache 语法的格式 3. Mustache 语法的应用场景 4. 三元运算 5.算数运算 二、 事件绑定 1. 什么是事件&#xff1f; 2. 小程序中常用的事件 3. 事件对象的属性列表 4.…

【漏洞复现】Office365-Indexs-任意文件读取

漏洞描述 Office 365 Indexs接口存在一个任意文件读取漏洞,攻击者可以通过构造精心设计的请求,成功利用漏洞读取服务器上的任意文件,包括敏感系统文件和应用程序配置文件等。通过利用此漏洞,攻击者可能获得系统内的敏感信息,导致潜在的信息泄露风险 免责声明 技术文章…