【Python机器学习】SVM——线性模型与非线性特征

news2025/1/11 3:00:03

SVM(核支持向量机)是一种监督学习模型,是可以推广到更复杂模型的扩展,这些模型无法被输入空间的超平面定义。

线模型在低维空间中可能非常受限,因为线和平面的灵活性有限,但是有一种方式可以让线性模型更加灵活,那就是添加更多特征,比如输入特征的交互式或多项式。

以下面的数据集为例:

from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
line_svc=LinearSVC().fit(X,y)

mglearn.plots.plot_2d_separator(line_svc,X)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

用于分类的线性模型只能用一条直线来划分数据点,对这个数据集无法给出较好的结果。

现在,对输入特征进行扩展,比如添加一个特征的平方作为一个新特征,那么每个数据点可以表示为三维点,而不是二维点,这样就可以做一个新的三维散点图:

import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3d

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
#line_svc=LinearSVC().fit(X,y)
X_new=np.hstack([X,X[:,1:]**2])
figure=plt.figure()

#3D可视化
ax=figure.add_subplot(projection='3d')
#首先画出所有y==0,然后画出所有y==1的点
mask=y==0

ax.scatter(X_new[mask,0],X_new[mask,1],X_new[mask,2],c='blue',marker='o',cmap=mglearn.cm2,s=60)
ax.scatter(X_new[~mask,0],X_new[~mask,1],X_new[~mask,2],c='red',marker='^',cmap=mglearn.cm2,s=60)
ax.set_xlabel('特征0')
ax.set_ylabel('特征1')
ax.set_zlabel('特征1**2')
plt.show()

 

在数据新的可视化中,可以用线性模型(三维平面将这两个类别区分开)

import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3d

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
X_new=np.hstack([X,X[:,1:]**2])
line_svc_3d=LinearSVC().fit(X_new,y)
coef,intercept=line_svc_3d.coef_.ravel(),line_svc_3d.intercept_

figure=plt.figure()

#3D可视化
ax=figure.add_subplot(projection='3d')
#首先画出所有y==0,然后画出所有y==1的点
xx=np.linspace(X_new[:,0].min()-2,X_new[:,0].max()+2,50)
yy=np.linspace(X_new[:,1].min()-2,X_new[:,1].max()+2,50)
XX,YY=np.meshgrid(xx,yy)
ZZ=(coef[0]*XX+coef[1]*YY+intercept)/-coef[2]
mask=y==0
ax.plot_surface(XX,YY,ZZ,rstride=8,cstride=8,alpha=0.3)
ax.scatter(X_new[mask,0],X_new[mask,1],X_new[mask,2],c='blue',marker='o',cmap=mglearn.cm2,s=60)
ax.scatter(X_new[~mask,0],X_new[~mask,1],X_new[~mask,2],c='red',marker='^',cmap=mglearn.cm2,s=60)
ax.set_xlabel('特征0')
ax.set_ylabel('特征1')
ax.set_zlabel('特征1**2')
plt.show()

如果将线性SVM模型看做原始特征的函数,那么它实际上已经不是线性的了,它不再是一条直线,而是一个椭圆:

import numpy as np
from sklearn.datasets import make_blobs
import mglearn
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from mpl_toolkits.mplot3d import Axes3D,axes3d

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
X,y=make_blobs(centers=4,random_state=8)
y=y%2
X_new=np.hstack([X,X[:,1:]**2])
line_svc_3d=LinearSVC().fit(X_new,y)
coef,intercept=line_svc_3d.coef_.ravel(),line_svc_3d.intercept_
xx=np.linspace(X_new[:,0].min()-2,X_new[:,0].max()+2,50)
yy=np.linspace(X_new[:,1].min()-2,X_new[:,1].max()+2,50)
XX,YY=np.meshgrid(xx,yy)
ZZ=YY**2

dec=line_svc_3d.decision_function(np.c_[XX.ravel(),YY.ravel(),ZZ.ravel()])
plt.contourf(XX,YY,dec.reshape(XX.shape),levels=[dec.min(),0,dec.max()],cmap=mglearn.cm2,alpha=0.5)
mglearn.discrete_scatter(X[:,0],X[:,1],y)
plt.xlabel('特征0')
plt.ylabel('特征1')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1373573.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows下安装oracle-win-64-11g超详细图文步骤

官方下载地址:点这里 1.根据自己电脑情况,解压64或者32位客户端,以及database压缩包 2.解压后双击执行database文件夹下的setup.exe 3.详细的安装步骤 (1)数据库安装 一、配置安全更新 电子邮件可写可不写&#xf…

docker启动mongo

用户名:root 密码:123456 version: 3.1 services:mongo:image: mongo:7container_name: mongorestart: alwaysports:- 27017:27017volumes:- /opt/data/mongo:/data/dbenvironment:TZ: Asia/ShanghaiMONGO_INITDB_ROOT_USERNAME: rootMONGO_INITDB_ROO…

序列模型(4)—— Scaling Laws

本文介绍 LLM 训练过程中重要的 Scaling Laws,这是一个经验规律,指出了固定训练成本(总计算量FLOPs) C C C 时,如何调配模型规模(参数量) N N N 和训练 Token 数据量 D D D,才能实现…

构建中国人自己的私人GPT

创作不易,请大家多鼓励支持。 在现实生活中,很多人的资料是不愿意公布在互联网上的,但是我们又要使用人工智能的能力帮我们处理文件、做决策、执行命令那怎么办呢?于是我们构建自己或公司的私人GPT变得非常重要。 先看效果 一、…

TOWE智能PDU:面向未来的数据中心机架配电

数字化和云计算时代,数据中心已经成为现代业务运营的基石。作为数据中心配电系统的关键组成部分,机柜PDU的性能和可靠性对于数据中心的稳定运行至关重要。智能PDU作为一种创新的配电解决方案,具有远程监控、智能负载分配、智能告警和安全保护…

Spring MVC 参数传递和JSON数据处理

参数传递 ModelAndView传递 编写controller Controller RequestMapping("/account") public class AccountController { ​//也可以不创建ModelAndView,直接在参数中指定RequestMapping(value "/findAccount9")public ModelAndView findAccou…

基于JavaWeb+BS架构+SpringBoot+Vue协同过滤算法的体育商品推荐系统的设计和实现

基于JavaWebBS架构SpringBootVue协同过滤算法的体育商品推荐系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 1 绪 论 1 1.1项目背景 1 1.2研究意义 2 1.3设计目的 2 1.…

Hive分区表实战 - 单分区字段

文章目录 一、实战概述二、实战步骤(一)创建图书数据库(二)创建国别分区的图书表(三)在本地创建数据文件(四)按分区加载数据1、加载中文书籍数据到countrycn分区2、加载英文书籍数据…

Java使用IText生产PDF时,中文标点符号出现在行首的问题处理

Java使用IText生成PDF时,中文标点符号出现在行首的问题处理 使用itext 5进行html转成pdf时,标点符号出现在某一行的开头 但这种情况下显然不符合中文书写的规则,主要问题出在itext中的DefaultSplitCharacter类,该方法主要用来判断…

从0到1入门C++编程——05 类和对象之运算符重载、继承

文章目录 运算符重载1.加号运算符重载2.左移运算符重载3.递增运算符重载4.赋值运算符重载5.关系运算符重载6.函数调用运算符重载 继承1.继承的基本语法及继承方式2.继承中的对象模型3.继承中构造函数和析构函数的顺序4.继承中同名成员的处理方式5.继承中同名静态成员处理方式6.…

18张AI电脑动漫超清壁纸免费分享

18张AI电脑动漫壁纸,紫色系和暗黑系,都很不错,喜欢的朋友可以拿去 CSDN免积分下载

【动态规划】C++ 算法458:可怜的小猪

作者推荐 视频算法专题 涉及知识点 动态规划 数学 力扣458:可怜的小猪 有 buckets 桶液体,其中 正好有一桶 含有毒药,其余装的都是水。它们从外观看起来都一样。为了弄清楚哪只水桶含有毒药,你可以喂一些猪喝,通过观察猪是否…

SD-WAN对企业网络升级的价值

在当今数字化飞速发展的时代,企业对网络的依赖越来越深,如何在确保IT正常运行的同时降低成本成为企业CIO和业务经理共同关注的焦点。SD-WAN的出现为企业组网带来了崭新的可能性,成为降低开支、提高效率和改善用户体验的重要工具。 企业在数字…

QT上位机开发(属性页面的设计)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 窗口设计的时候,如果很多内容一个page放不下,那么这个时候我们一般都会选择使用tab来进行处理。安装了tab之后,…

NR中如何判断是否需要measurement gap来做邻区的测量?

先看下NR中定义的测量。 intra-freq 测量和inter-freq测量可以分为以下几类: 1 SSB based intra-freq 测量:serving cell SSB的center freq与邻区 SSB的center freq 相同并且两个SSB 的SCS也相同。 2 SSB based inter-freq 测量:serving ce…

使用AI平台处理训练和微调数据

Llama.cpp是Georgi Gerganov 基于 Meta 的 LLaMA 模型 手写的纯 C/C 版本,让我们实现了在笔记本电脑上部署和体验AI大模型,实现没有GPU也可以运行AI大模型。执行起来虽然比较慢,但是只能算做体验,还可以选择不同语言。某个模型使用…

自动化的运维管理:探究Kubernetes工作机制的奥秘

1 云计算时代的操作系统 Kubernetes 是一个生产级别的 容器编排平台 和 集群管理系统 ,能够 创建、调度容器,监控、管理服务器。 容器是什么?容器是软件,是应用,是进程。服务器是什么?服务器是硬件&#…

通过 Elastic Stack 充分利用电信领域生成式 AI 的力量

作者:Elastic Piotr Kobziakowski, Jrgen Obermann 在瞬息万变的电信领域,Elastic Stack 与生成式 AI 的集成正在开创运营效率和创新的新时代。 这些技术不仅增强了网络运营,而且还彻底改变了各个部门的内部流程。 下面,我们将深入…

OpenAI推出GPT商店和ChatGPT Team服务

🦉 AI新闻 🚀 OpenAI推出GPT商店和ChatGPT Team服务 摘要:OpenAI正式推出了其GPT商店和ChatGPT Team服务。用户已经创建了超过300万个ChatGPT自定义版本,并分享给其他人使用。GPT商店集结了用户为各种任务创建的定制化ChatGPT&a…

联手英特尔,释放星飞分布式全闪存储潜能

近日,英特尔官网发布了与 XSKY 星辰天合联手打造的解决方案,即 XSKY 的新一代全闪分布式存储系统 XINFINI,该存储系统采用英特尔 QAT 加速数据压缩/解压缩,从而大幅度提升存储系统性能。 全闪存储系统面临的解压缩挑战 在存储系统…