赋能智慧农业生产,基于YOLOv7开发构建农业生产场景下油茶作物成熟检测识别系统

news2025/1/11 22:55:58

AI赋能生产生活场景,是加速人工智能技术落地的有利途径,在前文很多具体的业务场景中我们也从实验的角度来尝试性地分析实践了基于AI模型来助力生产生活制造相关的各个领域,诸如:基于AI+硬件实现农业作物除草就是一个比较熟知的场景,对于作物生产采摘场景我们则比较有所涉及,本文的主要目的就是填补这块的空白,以油茶作物采摘场景下的油茶作物成熟检测为切入点,基于目标检测模型来开发构建自动化的油茶作物成熟检测识别系统,这里是开篇,主要是基于YOLOv7来开发实现的实验性质的项目,在实际落地的时候离不开硬件端和控制端的组合,我们这里则主要是偏向软件模型的实现,首先看下实例效果:

在前文我们已经进行了相关的实践,感兴趣的话可以自行移步阅读即可:

《赋能智慧农业生产,基于YOLOv3开发构建农业生产场景下油茶作物成熟检测识别系统》

《赋能智慧农业生产,基于YOLOv8全系列【n/s/m/l/x】开发构建农业生产场景下油茶作物成熟检测识别系统》

《赋能智慧农业生产,基于YOLOv5开发构建农业生产场景下油茶作物成熟检测识别系统》

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。
接下来简单看下数据集情况:

这里主要是选择了yolov7-tiny这款轻量级参数量级的模型来进行开发训练,训练数据配置文件如下:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test

# number of classes
nc: 2

# class names
names: ['immature', 'mature']

模型文件如下:

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]

# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 47], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 37], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73
      
   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]
 

等待训练完成后看下结果详情。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【训练可视化】

【混淆矩阵】

【Batch实例】

感兴趣的话也都可以自行动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1373307.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IDEA中在Java项目中添加Web模块 与配置tomcat服务器

现有项目添加直接走第二步 生成普通新项目 给项目添加框架支持 勾选 Web Application 选项, 点击OK 得到项目目录结构 , 出现web目录结构, 且web目录文件夹出现小蓝点 web或webapp 没有出现小蓝点 说明web配置没有出现或是手动构建的目录结构 , 在IDE关闭或者迁移项目时会出…

【申请SSL证书】免费申请阿里云SSL证书

注意:申请 SSL证书的前提是有一个域名且备案了 第一部:申请免费证书 免费 CA 证书购买地址(请戳这里) 选择合适的选项如下图 为了解决免费证书近期存在的吊销、统计等问题,自2021年起,免费证书申请申请将…

Hive基础知识(八):Hive对数据库的增删改查操作

1. 创建数据库 CREATE DATABASE [IF NOT EXISTS] database_name [COMMENT database_comment]#注释 [LOCATION hdfs_path]#指定当前库的hdfs目录 [WITH DBPROPERTIES (property_nameproperty_value,...)]; #备注创建作者和创建时间 1)创建一个数据库,数据…

二、Java中SpringBoot组件集成接入【MySQL和MybatisPlus】

二、Java中SpringBoot组件集成接入【MySQL和MybatisPlus】 1.MySQL和MybatisPlus简介2.maven依赖3.配置1.在application.yaml配置中加入mysql配置2.新增Mybatis-Plus配置类 4.参考文章 1.MySQL和MybatisPlus简介 MySQL是一种开源的关系型数据库管理系统,被广泛应用…

Java 对象的内存布局

目录 一. 前言 二. Java 对象的内存布局 三. Java 对象结构 3.1. 对象头 3.1.1. Mark Word 3.1.2. 类型指针(Class Metadata Pointer) 3.1.3. 数组长度(Length) 3.2. 实例数据 3.3. 对齐填充(Padding&#xf…

Python-12-正则

当然内容不是很全,可以参考: 正则表达式学习资料 https://blog.csdn.net/weixin_40907382/article/details/79654372

解决录制的 mp4 视频文件在 windows 无法播放的问题

解决录制的 mp4 视频文件在 windows 无法播放的问题 kazam 默认录制保存下来的 mp4 视频文件在 windows 中是无法直接使用的,这是由于视频编码方式的问题。解决办法: 首先安装 ffmeg 编码工具: sudo apt-get install ffmpeg 然后改变视频的…

kivy,一个超级厉害的 Python 库!

更多Python学习内容:ipengtao.com 大家好,今天为大家分享一个超级厉害的 Python 库 - kivy。 Github地址:https://github.com/kivy/kivy Python是一种广泛使用的编程语言,而Kivy是一个用于创建跨平台移动应用和多点触控应用的开源…

【局域网window10系统搭建共享文件夹或与手机共享】

局域网window10系统搭建共享文件夹或与手机共享 1、Window 10之间搭建共享文件夹1.1 ping通两台window 10 电脑1.2 创建共享账号(window 10专业版)1.3 创建共享文件夹以及配置1.4访问共享文件夹 2、手机访问window10 共享文件夹(结合步骤一&a…

kubeSphere DevOps自定义容器环境JDK11

kubeSphere DevOps自定义容器环境JDK11 🍂前言🍂增加JDK11容器环境🍁检查是否成功 🍂不生效的原因排查🍁按步骤执行如下命令 🍂前言 kubeSphere 版本v3.1.1 遇到问题:kubeSphere默认支持容器只有JDK8,目前…

【Axure高保真原型】树控制内联框架

今天和大家分享树控制内联框架的原型模板,点击树的箭头可以打开或者收起子节点,点击最后一级人物节点,可以切换右侧内联框到对应的页面,左侧的树是通过中继器制作的,使用简单,只需要按要求填写中继器表格即…

基于JavaWeb+BS架构+SpringBoot+Vue智能菜谱推荐系统的设计和实现

基于JavaWebBS架构SpringBootVue智能菜谱推荐系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 目 录 目 录 III 第一章 概述 1 1.1 研究背景 1 1.2研究目的及意义 1 1.3…

Java:爬虫htmlunit实践

之前我们已经讲过使用htmlunit及基础,没有看过的可以参考Java:爬虫htmlunit-CSDN博客 我们今天就来实际操作一下,爬取指定网站的数据 1、首先我们要爬取一个网站数据的时候我们需要对其数据获取方式我们要进行分析,我们今天就拿双…

【数据库系统概论】期末复习2

系列文章 期末复习1 系列文章定义并理解下列术语,说明它们之间的联系与区别试述关系模型的完整性规则。在参照完整性中,什么情况下外码属性的值可以为空值?关系代数 定义并理解下列术语,说明它们之间的联系与区别 (1…

基于微信小程序的学校图书管理系统开发与实现

学校图书馆里有大量的各种领域的图书,可供学校各个专业的师生来借阅与做科学和论文研究,但过去图书馆的借阅、归还及图书资料的管理完全依靠图书馆工作人员的手工记录与引导师生找寻借阅的书籍,其耗时费力且低效,开发的学校图书管…

《AI基本原理和python实现》栏目介绍

一、说明 栏目《AI基本原理和python实现》的设计目的是为了实现相关算法的python编程。因为用python实现AI需对相关的python库进行全方位了解,本栏目基本包含了【机器学习】相关的经典算法,除此之外还包括了数据分析、时间序列等一些概念和相关python代码…

09、Kafka ------ 通过修改保存时间来删除消息(retention.ms 配置)

目录 通过修改保存时间来删除消息★ 删除指定主题的消息演示1、修改kafka检查过期消息的时间间隔2、修改主题下消息的过期时间3、查看修改是否生效4、先查看下主题下有没有消息5、添加几条消息看效果6、查看消息是否被删除 ★ 恢复主题的retention.ms配置1、先查看没修改前的te…

String#intern

1.intern方法 intern()方法可以在运行期间向字符串中动态加入字符串实例的方式,它的功能很简单,总结起来就一句话 可以在运行时向字符串池中添加字符串常量 添加的原则是,如果常量池中存在当前字符串,则直接返回常量池中它的引用&#xff1b…

【博士每天一篇论文-实验分析】Toroidal topology of population activity in grid cells

阅读时间:2023-11-18 1 介绍 年份:2022 作者:Richard J. Gardner,挪威科技大学卡维利系统神经科学研究所和神经计算中心,挪威特隆赫姆 期刊: Nature 引用量:194 这篇论文通过揭示格状细胞网络…

Django的数据库模型的CharField字段的max_length参数与中文字符数的关系探索(参数max_length的单位是字符个数还是字节数?)

01-清理干净之前的数据库迁移信息 02-根据setting.py中的信息删除掉之前建立的数据库 03-删除之后重新创建数据库 04-models.py中创建数据库模型 from django.db import modelsclass User(models.Model):username models.CharField(max_length4)email models.EmailField(uni…