[算法与数据结构][c++]:Static关键字和全局变量

news2025/1/11 10:17:01

Static关键字和全局变量

    • 1. 生命周期、作用域和初始化时机
    • 2. 全局变量
    • 3. Static 关键字
      • 3.1 面向过程
        • 3.1.1 静态全局变量
        • 3.1.2 静态局部变量(单例中会使用)
        • 3.1.3 静态函数
      • 3.2 面向对象
        • 3.2.1 类内静态成员变量
        • 3.2.2 类内静态成员函数
    • Reference


写在前面:

  • 如果您只是想回顾或了解一下static和全局变量的异同点,那么下面的总结将满足您的需求。

  • 如果您是一位初学者或对二者的使用模棱两可,建议您读完该篇文章,相信这一篇将解答完您对于static关键字以及全局变量的所有疑惑。

  • 如有问题或建议欢迎评论 or 私信 or Contact me:jerome.zhou@nio.com~~~

Static关键字和全局变量异同点:

  1. 存储位置:全局变量和静态变量都存储在内存的静态存储区。

  2. 生命周期:全局变量和静态变量的生命周期都是整个程序的执行期间。

  3. 作用域:

    • 全局变量:全局变量在整个程序中都是可见的,可以在任何函数中访问。
    • 静态变量:静态变量的作用域仅限于声明它的函数或文件。如果在函数内部声明静态变量,那么该静态变量只在该函数内部可见;如果在文件内部声明静态变量,那么该静态变量只在该文件内部可见。
  4. 初始化:

    • 全局变量:如果没有初始化,编译器会自动初始化为0。
    • 静态变量:如果没有初始化,编译器也会自动初始化为0。类内成员变量,需要类内声明,类外定义(定义时,可以使用默认初始化)
  5. 声明方式:

    • 全局变量:全局变量在所有函数外部声明。
    • 静态变量:在变量类型前加上关键字static来声明静态变量(可在任意位置)。
  6. 使用场景:

    • 全局变量:当需要在多个函数或文件中共享数据时,可以使用全局变量。
    • 静态变量:当需要保持变量的值在函数调用之间不变时,可以使用静态变量。

总的来说,全局变量和静态变量都有全局的生存期,但是静态变量的作用域可以是局部的,因此静态变量相对于全局变量来说,可以更好地保护数据,减少了数据被误操作的风险。


1. 生命周期、作用域和初始化时机

生命周期:变量从定义到销毁的时间范围。堆内存和栈内存章节,介绍了一下程序的内存管理,有一部分是Global Segment(全局段)负责存储静态变量和全局变量,存储在全局段的变量生命周期等于整个程序的运行时间

在这里插入图片描述

作用域 变量的可见代码区域(块作用域、函数作用域、类作用域和全局作用域)。不管是在全局还是局部声明的static变量都存放在程序的全局段,但是它的作用域却不等同于生命周期,它的作用域决定于它所被定义的位置。

从上述两点可以发现,静态变量和全局变量具有相同的全生命周期,存储在内存的静态存储区,但是二者的作用域却不尽相同。

初始化时机全局变量、文件域中的静态变量、类中的成员静态变量在main函数执行前初始化(饿汉式);局部变量中的静态变量在第一次调用时初始化(懒汉式)。

在类中声明的静态成员变量,还必须要在类外定义下才可以使用,否则会编译报错。

  • 静态成员变量不属于任何一个对象,对象的数据中不应该包含静态成员的数据。所以在定义类的时候不会给静态变量分配内存只是声明,因此就要在其他地方分配即定义。

定义与声明的区别:

  • 声明:向编译器声明(或介绍)了变量的名称,类型,或者函数及其参数类型等信息。声明并不分配存储空间。你可以多次声明同一个变量。

  • 定义:它除了向编译器声明(或介绍)了变量的名称,类型等信息外,还分配了存储空间。换句话说,定义是声明的扩展。你只能一次定义一个变量。,也可以顺便初始化。程序中变量有且只有一个定义(更能说明为什么要在类外再定义下类的静态成员变量了)。

在C++中,如果你试图多次定义同一个变量,编译器会报错。但是,你可以多次声明同一个变量,只要它在某个地方被定义过一次。

所以,所有的定义(包括变量和函数)都是声明,但并非所有的声明都是定义。

2. 全局变量

全局变量是在所有函数外部定义的变量,其作用域是从定义点开始到文件结尾。全局变量可以被任何函数访问和修改,即全局变量的生命周期是整个程序的执行期间

在C++中,全局变量的声明和使用主要有以下几点需要注意:

  1. 声明全局变量:全局变量在所有函数之外定义,通常是在程序的开头。例如:int x;

  2. 使用全局变量:在任何函数中,直接使用变量名即可访问全局变量。例如:x = 10;

  3. 如果全局变量和局部变量同名,那么在局部作用域中,局部变量会覆盖全局变量。如果想在局部作用域内访问全局变量,需要使用"::"全局作用域解析运算符。例如:::x = 20;

  4. 在一个文件中定义的全局变量,如果想在另一个文件中使用,需要在另一个文件中用关键字 extern 来声明该全局变量。例如:extern int x; 其他文件不能再定义一个与其相同名字的变量了(否则编译器会认为它们是同一个变量)。

  5. 尽量避免使用全局变量,因为全局变量会破坏数据的局部性,使得程序的理解和调试变得困难,同时也增加了数据的不安全性。

示例:

假设我们有两个文件,一个是main.cpp,一个是other.cpp。

在main.cpp文件中,我们定义了一个全局变量,并在main函数中使用该全局变量。

// main.cpp
#include <iostream>
#include "other.cpp"

int x = 10;  // 全局变量的定义

int main() {
    std::cout << x << std::endl;  // 使用全局变量
  printX(); // 其他文件使用全局变量  
  return 0;
}

在other.cpp文件中,我们想要使用main.cpp中定义的全局变量x,因此其他文件中需要用extern关键字声明该全局变量

// other.cpp
#include <iostream>

extern int x;  // 全局变量的声明

void printX() {
    std::cout << x << std::endl;  // 使用全局变量
}

如果我们有一个局部变量和全局变量同名,那么在这个局部作用域中,局部变量会覆盖全局变量。

// main.cpp
#include <iostream>

int x = 10;  // 全局变量的定义

int main() {
    int x = 20;  // 局部变量的定义
    std::cout << x << std::endl;  // 输出20,因为这里的x指的是局部变量
    std::cout << ::x << std::endl;  // 输出10,使用::访问全局变量
    return 0;
}

3. Static 关键字

接下来是static关键字,笔者按照面向过程(不引入类的概念)和面向对象(类内的static)两个角度展开static关键字的使用。

3.1 面向过程

3.1.1 静态全局变量

全局变量前,加上关键字static该变量就被定义成为一个静态全局变量(相当于限制作用域的全局变量:作用域仅为当前文件内)。

#include <iostream> 
using namespace std;

void fn();
static int n; // 定义静态全局变量,默认初始化为0

int main()
{
	n = 20; // 全局静态变量赋值
	fn();
  fn();
  return 0;
} 

void fn()
{
	n++;
	cout << n << endl;
} 

>>> 21
>>> 22

静态全局变量有以下特点:

  1. 全生命周期,该变量在Global Segment中分配内存;
  2. 默认初始化,未经初始化的静态全局变量会被程序自动初始化为0(自动变量的自动初始化值是随机的);
  3. 作用域有限, 静态全局变量在声明它的整个文件都是可见的,而在文件之外是不可见的;
  4. 静态变量都在全局数据区分配内存,包括后面将要提到的静态局部变量。对于一个完整的程序,在内存中的分布情况如下:【代码区】【全局数据区】【堆区】【栈区】,一般程序的由new产生的动态数据存放在堆区,函数内部的自动变量存放在栈区,静态数据(即使是函数内部的静态局部变量)存放在全局数据区。自动变量一般会随着函数的退出而释放空间,而全局数据区的数据并不会因为函数的退出而释放空间。
static int n; //定义静态全局变量

改为

int n; //定义全局变量

程序照样正常运行。
定义全局变量就可以实现变量在文件中的共享,但定义静态全局变量还有以下好处:

  1. 静态全局变量不能被其它文件所用;
  2. 其它文件中可以定义相同名字的变量,不会发生冲突;

将上述示例代码改为如下:

#include <iostream.h> 

void fn();
static int n; //定义静态全局变量 

int main()
{
	n=20;
	cout << n <<endl;
	fn();
	return 0} 

//File2 
#include <iostream.h> 
extern int n;
void fn()
{
	n++;
	cout << n << endl;
} 

编译并运行,会发现上述代码可以分别通过编译,但运行时出现错误。 这就是因为静态全局变量不能被其它文件所用,即使在其它文件中使用extern 进行声明也不行。

static int n; //定义静态全局变量

改为

int n; //定义全局变量

再次编译运行程序,程序可正常运行。

因此,在一个文件中,静态全局变量和全局变量功能相同;而在两个文件中,要使用同一个变量,则只能使用全局变量而不能使用静态全局变量。

3.1.2 静态局部变量(单例中会使用)

感兴趣的小伙伴可以看一下单例。

在局部变量前,加上关键字static,该变量就被定义成为一个静态局部变量(作用域更狭窄的全局变量:全生命周期,局部变量的作用域)。

//Example 3
#include <iostream>

void fn();
void fn_local();
int main()
{
	fn(); //10
	fn(); //11
	fn(); //12

  fn_local(); //10
  fn_local(); //10
  return 0;
}

void fn()
{
	static int n = 10;
	std::cout << n << std::endl;
	n++;
}

void fn_local()
{
	int n = 10;
	std::cout << n << std::endl;
	n++;
}

在函数fn_local()定义了一个变量,每当程序运行到该语句时都会给该局部变量分配栈内存。但随着程序退出函数体,系统就会收回栈内存,局部变量也相应失效。

但有时候我们需要在两次调用之间对变量的值进行保存。通常的想法是定义一个全局变量来实现。但这样一来**,变量已经不再属于函数本身了,不再仅受函数的控制,**这给程序的维护带来不便。

静态局部变量正好可以解决这个问题。静态局部变量保存在全局数据区,而不是保存在栈中,每次的值保持到下一次调用,直到下次赋新值。

静态局部变量有以下特点:

  1. 静态局部变量在全局数据区分配内存
  2. 静态局部变量在程序执行到该对象的声明处时被首次初始化,即以后的函数调用不再进行初始化;
  3. 静态局部变量一般在声明处初始化,如果没有显式初始化,会被程序自动初始化为0;
  4. 静态局部变量始终驻留在全局数据区,直到程序运行结束。但其作用域为局部作用域,当定义它的函数或语句块结束时,其作用域随之结束
3.1.3 静态函数

在函数的返回类型前加上static关键字,函数即被定义为静态函数静态函数与普通函数不同,它只能在声明它的文件当中可见,不能被其它文件使用。

#include <iostream>
static void fn();//声明静态函数

int main()
{
	fn();
    return 0;
}

void fn()//定义静态函数
{
	int n = 10;
	std::cout << n << std::endl;
}

定义静态函数的好处:(类似于静态全局变量)

  1. 静态函数不能被其它文件所用;
  2. 其它文件中可以定义相同名字的函数,不会发生冲突

3.2 面向对象

3.2.1 类内静态成员变量

在类内成员变量的声明前加上关键字static,该数据成员就是类内的静态数据成员。

#include <iostream>

class Myclass
{
public:
    Myclass(int a, int b, int c);
    void GetSum();

private:
    int a, b, c;
    static int Sum; // 声明静态数据成员 important!!! 此处仅进行了声明
};

// 没有类对象时,作用域就可见。
int Myclass::Sum = 0; // 定义并初始化静态数据成员,类外初始化(const static 可以类内初始化)

Myclass::Myclass(int a, int b, int c)
{
    this->a = a; // 同名变量赋值需要用this指针
    this->b = b;
    this->c = c;
    Sum += a + b + c;
}

void Myclass::GetSum()
{
    std::cout << "Sum=" << Sum << std::endl;
}

int main()
{
    Myclass M(1, 2, 3);
    M.GetSum();
    Myclass N(4, 5, 6);
    N.GetSum();
    M.GetSum();
    return 0;
}

静态成员变量有以下特点:

  1. 静态成员变量是该类的所有对象所共有的。对于普通成员变量,每个类对象都有自己的一份拷贝。而静态成员变量一共就一份,无论这个类的对象被定义了多少个,静态成员变量只分配一次内存,由该类的所有对象共享访问。所以,静态数据成员的值对每个对象都是一样的,它的值可以更新;
  2. 因为静态数据成员在全局数据区分配内存,由本类的所有对象共享,所以,它不属于特定的类对象,不占用对象的内存,而是在所有对象之外开辟内存,在没有产生类对象时其作用域就可见(类作用域)。因此,在没有类的实例存在时,静态成员变量就已经存在,我们就可以操作它;
  3. 静态成员变量存储在全局数据区。static 成员变量的内存空间既不是在声明类时分配,也不是在创建对象时分配,而是在定义初始化时分配静态成员变量必须初始化,而且只能在类体外进行。否则,编译能通过,链接不能通过。在示例中,语句int Myclass::Sum=0;是定义并初始化静态成员变量。初始化时可以赋初值,也可以不赋值。如果不赋值,那么会被默认初始化,一般是 0 (int Myclass::Sum;)。静态数据区的变量都有默认的初始值,而动态数据区(堆区、栈区)的变量默认是垃圾值。
  4. static 成员变量和普通 static 变量一样,编译时在静态数据区分配内存,到程序结束时才释放。这就意味着,static 成员变量不随对象的创建而分配内存,也不随对象的销毁而释放内存。而普通成员变量在对象创建时分配内存,在对象销毁时释放内存。
  5. 静态数据成员初始化与一般数据成员初始化不同。初始化时可以不加 static,但必须要有数据类型。被 private、protected、public 修饰的 static 成员变量都可以用这种方式初始化。静态数据成员初始化的格式为:<数据类型><类名>::<静态数据成员名>=<值>
  6. 类的静态成员变量访问形式1 (类已经被实例化):<类对象名>.<静态数据成员名>
  7. 类的静态成员变量访问形式2:<类类型名>::<静态数据成员名>,也即,静态成员不需要通过对象就能访问。
  8. 静态数据成员和普通数据成员一样遵从public,protected,private访问规则;
  9. 如果静态数据成员的访问权限允许的话(即public的成员),可在程序中,按上述格式来引用静态数据成员 ;
  10. sizeof 运算符不会计算 静态成员变量。
class CMyclass{
    int n;
    static int s;
};    //则sizeof(CMyclass)等于4

何时采用静态数据成员?

设置静态成员(变量和函数)这种机制的目的是将某些和类紧密相关的全局变量和函数写到类里面,看上去像一个整体,易于理解和维护。如果 想在同类的多个对象之间实现数据共享,又不要用全局变量,那么就可以使用静态成员变量。也即,静态数据成员主要用在各个对象都有相同的某项属性的时候。比如对于一个存款类,每个实例的利息都是相同的。所以,应该把利息设为存款类的静态数据成员。这有两个好处:

  1. 不管定义多少个存款类对象,利息数据成员都共享分配在全局数据区的内存,节省存储空间。
  2. 一旦利息需要改变时,只要改变一次,则所有存款类对象的利息全改变过来了。

你也许会问,用全局变量不是也可以达到这个效果吗?

同全局变量相比,使用静态数据成员有两个优势:

  1. 静态成员变量没有进入程序的全局命名空间,因此不存在与程序中其它全局命名冲突的可能,不会污染命名空间。
  2. 可以实现信息隐藏。静态成员变量可以是private成员,而全局变量不能。
3.2.2 类内静态成员函数

静态成员函数为类服务而不是为某一个类的具体对象服务。静态成员函数与静态成员变量一样,都是类的内部实现,属于类定义的一部分。普通成员函数必须具体作用于某个对象,而静态成员函数并不具体作用于某个对象。

普通的成员函数一般都隐含了一个 this指针(可以参见文章C++中的this指针和Python中的Self),this指针指向类的对象本身(指向实例化后的对象的地址),因为普通成员函数总是具体地属于类的某个具体对象的。当函数被调用时,系统会把当前对象的起始地址赋给 this 指针。通常情况下,this是缺省的。如函数fn()实际上是this->fn()。

与普通函数相比,静态成员函数属于类本身,而不作用于对象,因此它不具有this指针。正因为它没有指向某一个对象,所以它无法访问属于类对象的非静态成员变量和非静态成员函数,它只能调用其余的静态成员函数和静态成员变量。从另一个角度来看,由于静态成员函数和静态成员变量在类实例化之前就已经存在可以访问,而此时非静态成员还是不存在的,因此静态成员不能访问非静态成员。

#include <iostream>
using namespace std;

class Student{
private:
   char *name;
   int age;
   float score;
   static int num;  	//学生人数
   static float total;  //总分
public:
   Student(char *, int, float);
   void say();
   static float getAverage();  //静态成员函数,用来获得平均成绩
};

int Student::num = 0;
float Student::total = 0;

Student::Student(char *name, int age, float score)
{
   this->name = name;
   this->age = age;
   this->score = score;
   num++;
   total += score;
}

void Student::say()
{
   cout<<name<<"的年龄是 "<<age<<",成绩是 "<<score<<"(当前共"<<num<<"名学生)"<<endl;
}
// 类内静态成员函数,智能访问类内静态成员变量
float Student::getAverage()
{
   return total / num;
}

int main()
{
   (new Student("小明", 15, 90))->say();
   (new Student("李磊", 16, 80))->say();
   (new Student("张华", 16, 99))->say();
   (new Student("王康", 14, 60))->say();
   cout<<"平均成绩为 "<<Student::getAverage()<<endl;
   return 0;
}

>>> 小明的年龄是 15,成绩是 90(当前共1名学生)
李磊的年龄是 16,成绩是 80(当前共2名学生)
张华的年龄是 16,成绩是 99(当前共3名学生)
王康的年龄是 14,成绩是 60(当前共4名学生)
平均成绩为 82.25

静态成员函数的特点:

  1. 出现在类外的函数定义时不能指定关键字static;
  2. 静态成员之间可以相互访问,即静态成员函数(仅)可以访问静态成员变量、静态成员函数、静态变量;
  3. 静态成员函数不能访问非静态成员函数和非静态成员变量;
  4. 非静态成员函数可以任意地访问静态成员函数和静态数据成员
  5. 由于没有this指针的额外开销,静态成员函数与类的全局函数相比速度上会稍快;
  6. 调用静态成员函数,两种方式:
  • 通过成员访问操作符(.)和(->),也即通过类对象或指向类对象的指针调用静态成员函数。
  • 直接通过类来调用静态成员函数。<类名>::<静态成员函数名>(<参数表>)。也即,静态成员不需要通过对象就能访问。

Reference

https://zhuanlan.zhihu.com/p/37439983

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1373158.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Springboot药物不良反应智能监测系统源码

一、系统简介 ADR指的是药品不良反应&#xff0c;即在合格药品在正常用法用量下&#xff0c;出现与用药目的无关或意外的有害反应。ADR数据辨别引擎、药品ADR信号主动监测引擎、ADR处置行为分析引擎。ADR数据辨别引擎&#xff0c;通过主动监测患者具象临床指标&#xff0c;比如…

作业:通过两台linux主机配置ssh实现互相免密登陆

做题步骤&#xff1a; 一.开启两个Linux主机&#xff0c;并且用ssh连接&#xff0c;要能够ping通 我这里是server&#xff1a;192.168.81.129 client&#xff1a;192.168.81.130 举例 步骤&#xff1a; 1.安装服务软件 2.运行软件程序 3.根据自定配置提供对应的服务/etc/chr…

centOS系统yum安装和卸载mongodb

0.1 什么是mongodb&#xff1f; 0.2 Mongodb是一个基于分布式文件存储的数据库。由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。 0.3 Mongodb是一个介于关系数据库和非关系数据库之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系数据…

WEB之HTML练习

第一题&#xff1a;用户注册界面 HTML代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><titl…

C++游戏引擎中的坐标系

一.Direct3D四大变换 <1.世界矩阵变换: 为了模拟3D物体的旋转,缩放,平移等功能,Direct3D将静态模型的顶点坐标x,y,z经过旋转平移矩阵变换以得到新的顶点坐标x1,y1,z1 D3DXMATRIX mTrans ; D3DXMatrixTranslation (&mTrans , 5 , - 3 , 0 ); g_pd3dDevice->SetTr…

Avalonia学习(二十)-登录界面演示

今天开始继续Avalonia练习。 本节&#xff1a;演示实现登录界面 在网上看见一个博客&#xff0c;展示Avalonia实现&#xff0c;仿照GGTalk&#xff0c;我实现了一下&#xff0c;感觉是可以的。将测试的数据代码效果写下来。主要是样式使用&#xff0c;图片加载方式。 只有前…

移远通信推出两款Wi-Fi 7模组新品,赋能无线连接巅峰体验

​1月9日&#xff0c;在2024年国际消费电子产品展览会 (CES) 期间&#xff0c;全球领先的物联网整体解决方案供应商移远通信宣布&#xff0c;正式推出支持Wi-Fi 7技术的通信模组FGE576Q和FGE573Q &#xff0c;这两款模组将以前沿的Wi-Fi性能突破无线连接边界&#xff0c;为下一…

JVM工作原理与实战(十二):打破双亲委派机制-自定义类加载器

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、打破双亲委派机制的方法 二、自定义类加载器 1.Tomcat自定义类加载器案例 2.自定义类加载器详解 3.案例解析 总结 前言 JVM作为Java程序的运行环境&#xff0c;其负责解释和执…

探索未来餐饮:构建创新连锁餐饮系统的技术之旅

随着数字化时代的发展&#xff0c;连锁餐饮系统的设计和开发不再仅仅关乎订单处理&#xff0c;更是一场充满技术创新的冒险。在本文中&#xff0c;我们将深入研究连锁餐饮系统的技术实现&#xff0c;带你探索未来餐饮业的数字化美食之旅。 1. 构建强大的后端服务 在设计连锁…

windows安装Elasticsearch后使用ik分词器报错解决办法

最近在学习Elasticsearch&#xff0c;安装完成后下载了ik分词器压缩到plugins目录下启动es报错如下&#xff1a; java.security.AccessControlException: access denied (“java.io.FilePermission” “D:…\plugins\ik-analyzer\config\IKAnalyzer.cfg.xml” “read”)咋一看…

k8s的存储卷、数据卷

容器内的目录和宿主机目录进行挂载。 容器在系统上的生命周期是短暂的。 k8s用控制器创建的pod。delete相当于重启。容器的状态也会恢复到初始状态。一旦恢复到初始状态&#xff0c;所有的后天编辑的文件都会消失 容器和节点之间创建一个可以持久化保存容器内文件的存储卷。…

OpenCV-21方盒滤波和均值滤波

一、方和滤波 使用API --- boxFiter(src, ddepth, ksize[,dst[,anchor[, normalize[, borderType]]]])方盒滤波 方盒滤波的卷积核如下所示&#xff1a; --- normalize Ture时&#xff0c; a 1 / &#xff08;W*H&#xff09;滤波器的宽高 --- normalize False时&#xff…

【大数据OLAP引擎】StartRocks存算分离

存算分离的原因 降低存储成本&#xff1a;同样的存储大小对象存储价格只有SSD的1/10&#xff0c;所以号称存储成本降低80%不是吹的。 存算一体到存算分离 存算一体 作为 MPP 数据库的典型代表&#xff0c;StarRocks 3.0 版本之前使用存算一体 (shared-nothing) 架构&#xf…

mysql主从复制教程

1、介绍 1.1 是什么 主从复制&#xff0c;是用来建立一个和主数据库完全一样的数据库环境&#xff0c;称为从数据库 1.2 有什么用 数据备份&#xff1a;通过主从复制&#xff0c;可以将主数据库的数据复制到一个或多个从数据库中&#xff0c;以实现数据备份和灾难恢复。当主…

免费简单好用的 webshell 在线检测:支持 php、jsp、asp等多格式文件

话不多说&#xff0c;直接上图上链接&#xff1a;https://rivers.chaitin.cn/?share3d4f2e8aaec211eea5550242c0a8170c 还是比较好用的&#xff0c;支持 PHP、JSP 文件 webshell 检测&#xff0c;看官方解释文档&#xff0c;引擎使用静态文本特征、骨架哈希、静态语义分析、动…

【Github-Action】GithubAction 环境下,如何将临时生成的文件推送至指定分支。

通过这篇文章你可以掌握如何将github action 环境下临时生成的文件推送至指定分支&#xff0c;并且可以打开利用github开放的api做各种强大或有趣的事情的视野和思路。 如果你对github-action感兴趣&#xff0c;还可以看这篇文章&#xff0c; 这篇文章教会你如何开发Github Act…

多局域网UDP通信测试

今天遇到一个问题&#xff1a; 一台电脑同时连接A、B两个路由器的网络&#xff0c;同时分别收发各自局域网中的消息&#xff0c;是否可行&#xff1f; 理论上可以&#xff0c;测试一下吧 电脑同时连接两个网络 两个网络的网段分别为3和1 在同一个程序中使用两个网络连接的地…

计算机体系结构----计分板(scoreboard)算法

计分板算法简介 计分板记录着所有必要的信息&#xff0c;用来控制以下事情&#xff1a; 每条指令何时可以读取操作数并投入运行&#xff08;对应着RAW冲突的检测&#xff09;每条指令何时可以写入结果&#xff08;对应着WAR冲突的检测&#xff09;在计分板中&#xff0c;WAW冲…

css三大特性

css 三大特性 一、层叠性&#xff1a;css样式冲突采取原则&#xff08;后者覆盖前者&#xff09; 二、继承性&#xff1a;对于部分属性样式会有天生的继承 &#xff08;1&#xff09;字体系列属性 font-family&#xff1a;字体系列 font-weight&#xff1a;字体的粗细 fon…

TS 36.306 V12.0.0

​本文的内容主要涉及TS 36.306&#xff0c;版本是C00&#xff0c;也就是V12.0.0。