轻松玩转书生·浦语大模型趣味 Demo
大模型及 InternLM 模型简介
什么是大模型
大模型通常指的是机器学习或人工智能领域中参数数量巨大、拥有庞大计算能力和参数规模的模型。这些模型利用大量数据进行训练,并且拥有数十亿甚至数千亿个参数。大模型的出现和发展得益于增长的数据量、计算能力的提升以及算法优化等因素。这些模型在各种任务中展现出惊人的性能,比如自然语言处理、计算机视觉、语音识别等。这种模型通常采用深度神经网络结构,如 Transformer
、BERT
、GPT
( Generative Pre-trained Transformer )等
InternLM 模型
InternLM
是一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖。通过单一的代码库,它支持在拥有数千个 GPU
的大型集群上进行预训练,并在单个 GPU
上进行微调,同时实现了卓越的性能优化。在 1024
个 GPU
上训练时,InternLM
可以实现近 90%
的加速效率。
Lagent
是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。通过 Lagent
框架可以更好的发挥 InternLM
的全部性能。
InternLM-Chat-7B 智能对话 Demo
环境准备
进入开发机后,在页面的左上角可以切换 JupyterLab
、终端
和 VScode
,并在终端输入 bash
命令,进入 conda
环境
进入 conda
环境之后,使用以下命令从本地克隆一个已有的 pytorch 2.0.1
的环境
bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中 /root/share/install_conda_env_internlm_base.sh internlm-demo
然后使用以下命令激活环境
conda activate internlm-demo
并在环境中安装运行 demo 所需要的依赖
# 升级pip python -m pip install --upgrade pip pip install modelscope==1.9.5 pip install transformers==4.35.2 pip install streamlit==1.24.0 pip install sentencepiece==0.1.99 pip install accelerate==0.24.1
模型下载
InternStudio平台的 share
目录下已经为我们准备了全系列的 InternLM
模型,所以我们可以直接复制即可
mkdir -p /root/model/Shanghai_AI_Laboratory cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory# -r 选项表示递归地复制目录及其内容
也可以使用 modelscope
中的 snapshot_download
函数下载模型,第一个参数为模型名称,参数 cache_dir
为模型的下载路径。
在 /root
路径下新建目录 model
,在目录下新建 download.py
文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/model/download.py
执行下载,模型大小为 14 GB,下载模型大概需要 10~20 分钟
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/model', revision='v1.0.3')
代码准备
首先 clone
代码,在 /root
路径下新建 code
目录,然后切换路径, clone 代码
mkdir -p /root/codecd /root/code git clone https://gitee.com/internlm/InternLM.git
切换 commit 版本,与教程 commit 版本保持一致,可以让大家更好的复现
cd InternLM git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17
将 /root/code/InternLM/web_demo.py
中 29 行和 33 行的模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b
终端运行
我们可以在 /root/code/InternLM
目录下新建一个 cli_demo.py
文件,将以下代码填入其中
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("User >>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
response, history = model.chat(tokenizer, input_text, history=messages)
messages.append((input_text, response))
print(f"robot >>> {response}")
然后在终端运行以下命令,即可体验 InternLM-Chat-7B
模型的对话能力。对话效果如下所示
python /root/code/InternLM/cli_demo.py
web demo 运行
我们切换到 VScode
中,运行 /root/code/InternLM
目录下的 web_demo.py
文件,输入以下命令后,查看本教程5.2配置本地端口后,将端口映射到本地。在本地浏览器输入http://127.0.0.1:6006即可