e2studio开发STHS34PF80人体存在传感器(1)----获取人体存在状态

news2024/9/24 15:18:49

e2studio开发STHS34PF80人体存在传感器.1--获取人体存在状态

  • 概述
  • 视频教学
  • 样品申请
  • 完整代码下载
  • 主要特点
  • 硬件准备
  • 接口
  • 最小系统图
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • IIC属性配置
  • IIC配置
  • R_IIC_MASTER_Open()函数原型
  • R_IIC_MASTER_Write()函数原型
  • R_IIC_MASTER_Read()函数原型
  • sci_i2c_master_callback()回调函数
  • CS设置
  • 参考案例
  • 获取ID
  • 温度测量滤波方式
  • 智能识别算法
  • 使用块数据更新(BDU)功能
  • 设置ODR速率
  • 获取状态
  • 测试结果

概述

STHS34PF80是一款高性能的红外(IR)传感器,特别适用于检测存在感和运动。其主要特点是高灵敏度,能在没有透镜的情况下探测到4米远的物体(尺寸为70 x 25厘米),并配有集成的硅红外滤波器。这款传感器能够区分静止和移动物体,并具有80°的视场角。它出厂时已校准,且设计为低功耗,包含用于提高探测效果的智能算法。
其应用范围广泛,不仅包括存在感和接近感应、报警/安全系统、智能家居、智能照明、物联网、智能储物柜和智能墙板,还特别适用于检测人体的存在。由于其高灵敏度和精确度,它能够有效地用于人体检测,如在安保系统中探测潜在的入侵者,或在智能家居系统中监测房间内的人员动态。
最近在弄ST的课程,需要样片的可以加群申请:615061293 。
在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1KN4y1v7gy/

e2studio开发STHS34PF80人体存在传感器(1)----获取人体存在状态

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

完整代码下载

https://download.csdn.net/download/qq_24312945/88711602

主要特点

高灵敏度探测: 专为探测红外线的存在和运动设计,具有高灵敏度。
探测范围: 能够在没有透镜的情况下,探测到70 x 25厘米大小的物体,最远达4米。
集成硅红外滤波器: 通过滤除非红外波长,确保精确探测。
静态和运动物体探测: 能够检测到静止和移动的物体。
视场角: 提供80°的视场角。
出厂校准: 出厂即校准,保证了即插即用的可靠性和准确性。
低功耗设计: 设计注重能效,确保低能耗。
嵌入式智能算法: 用于提升存在感和运动探测的效果。

在这里插入图片描述

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板:
在这里插入图片描述

接口

STHS34PF80模块接口的示意图如下所示,支持IIC或者SPI通讯。
在这里插入图片描述

最小系统图

在这里插入图片描述

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL来进行演示。
在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述
需要修改XTAL为12M。

在这里插入图片描述

UART配置

在这里插入图片描述
点击Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。
在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。
在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

 /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);


回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述
在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif

PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}

int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

IIC属性配置

查看手册,可以得知STHS34PF80的IIC地址为“1011010” ,即0x5A。
在这里插入图片描述

IIC配置

配置RA4M2的I2C接口,使其作为I2C master进行通信。
查看开发板原理图,对应的IIC为P407和P408。

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

在这里插入图片描述

设置IIC的配置,需要注意从机的地址。

在这里插入图片描述

R_IIC_MASTER_Open()函数原型

R_IIC_MASTER_Open()函数为执行IIC初始化,开启配置如下所示。

    /* Initialize the I2C module */
    err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);
    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函数原型

在这里插入图片描述
R_IIC_MASTER_Write()函数是向IIC设备中写入数据,写入格式如下所示。

    err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, &reg, 1, true);
    assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函数原型

在这里插入图片描述

R_SCI_I2C_Read()函数是向IIC设备中读取数据,读取格式如下所示。

    /* Read data from I2C slave */
    err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false);
    assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回调函数

对于数据是否发送完毕,可以查看是否获取到I2C_MASTER_EVENT_TX_COMPLETE字段。

在这里插入图片描述

/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{
    i2c_event = I2C_MASTER_EVENT_ABORTED;
    if (NULL != p_args)
    {
        /* capture callback event for validating the i2c transfer event*/
        i2c_event = p_args->event;
    }
}

CS设置

STS34PF80IO设置如下所示。
在IIC模式下CS需要给个高电平。

在这里插入图片描述
官方提供IIC接线如下所示。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

设置PC0为输出口。

在这里插入图片描述

参考案例

https://github.com/STMicroelectronics/sths34pf80-pid

获取ID

参考例程序中对应的获取ID驱动程序,如下所示。

在这里插入图片描述

获取ID可以查看0x0F,读出来的值应该为0xD3。

在这里插入图片描述

对应的获取ID驱动程序,如下所示。

   /* Open the transfer instance with initial configuration. */
    err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);
    assert(FSP_SUCCESS == err);
    printf("hello world!\n");

    /* Initialize the I2C module */
    err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);
    /* Handle any errors. This function should be defined by the user. */
    assert(FSP_SUCCESS == err);


    R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_00, BSP_IO_LEVEL_HIGH);

    uint8_t whoami;
    sths34pf80_lpf_bandwidth_t lpf_m, lpf_p, lpf_p_m, lpf_a_t;

    /* Initialize mems driver interface */
    dev_ctx.write_reg = platform_write;
    dev_ctx.read_reg = platform_read;
    dev_ctx.handle = &SENSOR_BUS;

    /* Wait sensor boot time */
    platform_delay(BOOT_TIME);

    /* Check device ID */
    sths34pf80_device_id_get(&dev_ctx, &whoami);
    printf("STHS34PF80_ID=0x%x,whoamI=0x%x\n",STHS34PF80_ID,whoami);
    if (whoami != STHS34PF80_ID)
        while(1);

温度测量滤波方式

首先需要设置AVG_TRIM (10h) 寄存器用于配置温度平均值滤波的参数,以控制环境温度和目标温度测量的平滑度和稳定性。在温度测量中,可能会受到噪声和干扰的影响,这可能导致短期内测量值的波动。通过应用平均值滤波,可以平滑这些波动,从而得到更加稳定的温度数据。AVG_TRIM 寄存器中的设置会决定平均值滤波的级别,从而影响滤波的时间常数以及平滑度。

这里默认参数如下

  1. 在AVG_TRIM(10h)寄存器中写入02h // AVG_T = 8,AVG_TMOS = 32
  2. 在CTRL1(20h)寄存器中写入07h // ODR = 15 Hz
    在这里插入图片描述

AVG_T[1:0]: 这个设置位用于选择环境温度的平均值滤波样本数。
AVG_TMOS[2:0]: 这个设置位用于选择目标温度的平均值滤波样本数以及与之相关的噪声水平。

在这里插入图片描述

在这里插入图片描述

对象温度的平均值数量 (sths34pf80_avg_tobject_num_set 函数): 这个函数设置用于测量对象温度的平均值数量。参数 val 可以是多种不同的值,例如 AVG_TMOS_2, AVG_TMOS_8, AVG_TMOS_32, 等等,表示不同的平均值数量。这些设置影响传感器输出的平滑程度和响应速度,高的平均值数量会增加输出数据的平滑度,但也可能增加响应时间。

环境温度的平均值数量 (sths34pf80_avg_tambient_num_set 函数): 类似地,这个函数设置环境温度测量的平均值数量。参数 val 可以是 AVG_T_8, AVG_T_4, AVG_T_2, AVG_T_1 等,用于设置不同的平均值数量。这也会影响传感器输出的平滑程度和响应速度。

在你提供的代码段中,使用了 STHS34PF80_AVG_TMOS_32 和 STHS34PF80_AVG_T_8 作为参数,分别用于设置对象温度和环境温度的平均值数量。这意味着传感器会对对象温度使用32个数据点的平均值,对环境温度使用8个数据点的平均值。这样的设置有助于在传感器的测量中实现一定程度的数据平滑和过滤噪声,同时保持适当的响应速度。

  /* Set averages (AVG_TAMB = 8, AVG_TMOS = 32) */
  sths34pf80_avg_tobject_num_set(&dev_ctx, STHS34PF80_AVG_TMOS_32);
  sths34pf80_avg_tambient_num_set(&dev_ctx, STHS34PF80_AVG_T_8);

智能识别算法

STHS34PF80嵌入了智能数字算法,以支持以下三种检测模式:
• 存在检测
• 运动检测
• 环境温度冲击检测
这些算法分别使用不同的低通滤波器(LPF_P、LPF_M和LPF_A_T)。此外,存在和运动检测算法使用另一个共同的低通滤波器(LPF_P_M)。这些滤波器用于生成中间信号(TPRESENCE、TMOTION和TAMB_SHOCK),可以用于对算法本身进行微调。这些滤波器的截止频率值可以通过它们各自的位范围进行配置,这些位范围可以在LPF1(0Ch)和LPF2(0Dh)寄存器中找到,如下所示。

在这里插入图片描述

寄存器LPF1 (0Ch)和LPF2 (0Dh)如下所示。

在这里插入图片描述
案例中只是对滤波器进行了读取以及打印。

  /* read filters */
  sths34pf80_lpf_m_bandwidth_get(&dev_ctx, &lpf_m);
  sths34pf80_lpf_p_bandwidth_get(&dev_ctx, &lpf_p);
  sths34pf80_lpf_p_m_bandwidth_get(&dev_ctx, &lpf_p_m);
  sths34pf80_lpf_a_t_bandwidth_get(&dev_ctx, &lpf_a_t);

  printf("lpf_m: %02d, lpf_p: %02d, lpf_p_m: %02d, lpf_a_t: %02d\r\n", lpf_m, lpf_p, lpf_p_m, lpf_a_t);

使用块数据更新(BDU)功能

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。

在这里插入图片描述

案例也是设置了BDU。
BDU在CTRL1 (20h)寄存器中。

在这里插入图片描述

  /* Set BDU */
  sths34pf80_block_data_update_set(&dev_ctx, 1);

设置ODR速率

初始化完毕之后需要通过CTRL1(20h)寄存器中的ODR[3:0]位范围选择其中一种操作模式(连续模式),或者在CTRL2(21h)寄存器中将ONE_SHOT位设置为1(单次触发模式)。

在这里插入图片描述

当配置了寄存器LPF1 (0Ch)和LPF2 (0Dh) 的LPF_P、LPF_M和LPF_A_T、LPF_P_M滤波器之后,可以去设置ODR速率。

在这里插入图片描述

这里设置速率为8Hz。

  /* Set ODR */
  sths34pf80_odr_set(&dev_ctx, STHS34PF80_ODR_AT_8Hz);	

获取状态

STATUS (地址为0x23U) 用于表示传感器的状态。
drdy(1位):这个位用于指示数据就绪(Data Ready)状态。当传感器有新的数据可供读取时,这个位会被设置。

FUNC_STATUS(25h)主要检测三个标志位:PRES_FLAG、MOT_FLAG 和 TAMB_SHOCK_FLAG,这些标志位用于检测不同类型的事件。
PRES_FLAG是存在检测标志位。当存在检测到人员存在时,此位变为1。
MOT_FLAG:运动检测标志位。当检测到运动时,此位变为1。
TAMB_SHOCK_FLAG:环境温度冲击检测标志位。当检测到环境温度冲击时,此位变为1。

在这里插入图片描述

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
  sths34pf80_drdy_status_t status;
  sths34pf80_func_status_t func_status;

  sths34pf80_drdy_status_get(&dev_ctx, &status);
  if (status.drdy)
  {
    sths34pf80_func_status_get(&dev_ctx, &func_status);

    printf("TAmbient Shock: %d - Presence: %d - Motion: %d\r\n",func_status.tamb_shock_flag, func_status.pres_flag, func_status.mot_flag);
 }		

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

测试结果

在未有人的情况下。

在这里插入图片描述

在人体纯在情况下。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1364838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

canal本地搭建以及运行

具体的文档可参考官网文档&#xff1a;https://github.com/alibaba/canal/wiki canal [kənl]&#xff0c;译意为水道/管道/沟渠&#xff0c;主要用途是基于 MySQL 数据库增量日志解析&#xff0c;提供增量数据订阅和消费 工作原理 canal 模拟 MySQL slave 的交互协议&#x…

解决Canvas画图清晰度问题

最近在开发Web端远程桌面的时候遇到的一个问题&#xff0c;解决记录一下&#xff0c;分享给各位有需要用到的朋友。 先吹下水&#xff1a;远程桌面的连接我们是通过Websocket连接后&#xff0c;后端不断返回远程端的界面二进制数据流&#xff0c;我接收到之后转为图像&#xf…

mxxWechatBot微信机器人自定义接口支持配置多个关键词、多个群聊和好友

大家伙&#xff0c;我是雄雄&#xff0c;欢迎关注微信公众号&#xff1a;雄雄的小课堂。 前言 注意&#xff1a; 免责声明&#xff1a;该工具仅供学习使用&#xff0c;禁止使用该工具从事违法活动&#xff0c;否则永久拉黑​封禁账号。本工具我不会绝对保证对你的账号没有影响…

案例精选|淄博绿能燃气工程有限公司日志审计系统建设方案

淄博绿能燃气工程有限公司&#xff0c;成立于1994年&#xff0c;前身为淄博市煤气公司管道液化气分公司。公司业务主要涉及天然气、液化气等市政工程施工及城镇燃气供应等领域&#xff0c;具有市政公用工程施工总承包二级资质&#xff0c;《压力管道安装许可证》压力管道安装GB…

看图识熊(三)

使用Windows Machine Learning加载ONNX模型并推理 环境要求 Windows Machine Learning支持在Windows应用程序中加载并使用训练好的机器学习模型。Windows 10从10.0.17763.0版本开始提供这套推理引擎&#xff0c;所以需要安装17763版本的Windows 10 SDK进行开发&#xff0c;并…

实战Flink Java api消费kafka实时数据落盘HDFS

文章目录 1 需求分析2 实验过程2.1 启动服务程序2.2 启动kafka生产 3 Java API 开发3.1 依赖3.2 代码部分 4 实验验证STEP1STEP2STEP3 5 时间窗口 1 需求分析 在Java api中&#xff0c;使用flink本地模式&#xff0c;消费kafka主题&#xff0c;并直接将数据存入hdfs中。 flin…

秒懂百科,C++如此简单丨第十五天:指针

目录 必看信息 Everyday English 前言 &#x1f4dd;了解指针 &#x1f4dd;定义指针 &#x1f4dd;分析指针 &#x1f4dd;运用指针 总结 必看信息 ▶本篇文章由爱编程的小芒果原创&#xff0c;未经许可&#xff0c;严禁转载。 ▶本篇文章被收录于秒懂百科&#xff0c…

网络层协议及IP编址

0x00 前言 本节为网络层协议及IP编址内容 IP地址的范围&#xff1a;0.0.0.0-255.255.255.255 IP分为网络位以及主机位。子网划分就是向主机位借位。 网络层协议 IPICMP&#xff08;internet Control message protocol&#xff09;IPX IP协议的作用 为网络层的设备提供逻…

2023湾区产城创新大会:培育数字化供应链金融新时代

2023年12月26日&#xff0c;由南方报业传媒集团指导&#xff0c;南方报业传媒集团深圳分社主办的“新质新力——2023湾区产城创新大会”在深圳举行。大会聚集里国内产城研究领域的专家学者以及来自产业园区、金融机构、企业的代表&#xff0c;以新兴产业发展为议题&#xff0c;…

【计算机网络】网络基础--协议/网络协议/网络传输流程/地址管理

文章目录 一、计算机网络背景二、协议1.协议是什么2.为什么要有协议 三、网络协议1.为什么要进行协议分层2.OSI七层模型3.TCP/IP五层(或四层)模型 四、网络传输基本流程1.协议报头2.局域网3.数据包封装和分用4.网络传输流程图 五、网络中的地址管理1.认识IP地址2.认识MAC地址3.…

C++与数据库MySQL锁——模拟订票(事务)

假设订票的时候&#xff0c;好几个人同时进入&#xff0c;查看这张票是否售出&#xff0c;假如同时购买了这张票&#xff0c;那对于售票行业来说&#xff0c;可能就会发生低级错误。那么如何避免这类事情发生呢&#xff1f; 解决办法&#xff1a; 在一个人访问的时候&#xf…

DataFunSummit:2023年知识图谱在线峰会-核心PPT资料下载

一、峰会简介 AIGC&#xff0c;ChatGPT以及发布的GPT-4相信已经给大家带来足够的冲击&#xff0c;那么对于知识图谱的应用产生哪些变化和变革&#xff1f;知识图谱在其中如何发挥作用呢&#xff1f;通过LLM是否有可能辅助创建通用大规模知识图谱&#xff1f;AIGC时代下行业知识…

burpsuite专业版的安装和破解(2024年最新)

burpsuite专业版的安装和破解&#xff08;2024年最新&#xff09; 简介视频教程下载BP专业版第一步第二步&#xff1a;下载第三步第四步&#xff1a;打开powershell界面第五步&#xff1a;在powershell中执行BurpLoaderKeygen.jar文件第六步&#xff1a;破解第七步&#xff1a;…

聚道云软件连接器,助力某钢铁行业公司实现发票信息自动同步

客户介绍&#xff1a; 某钢铁行业公司是一家大型现代化民营钢铁企业&#xff0c;拥有覆盖钢铁全产业链的冶金装备、技术和全过程信息系统。公司业务涉及钢铁、煤炭、房产等行业&#xff0c;多年来一直保持着稳健的发展态势。 添加图片注释&#xff0c;不超过 140 字&#xff0…

VlnPlot画的其实不是原始数据

昨天的推文描述了让小提琴图肚子变大的做法&#xff1a;让你的小提琴肚子大起来‍‍‍‍‍‍‍‍‍‍‍‍‍ 在此说明&#xff1a;这种不考虑后果&#xff0c;就让肚子大起来的做法是不严谨的。如需使用&#xff0c;建议将原始图和修改图放在一起对比&#xff0c;且在文章中注…

vue3+echart绘制中国地图并根据后端返回的坐标实现涟漪动画效果

1.效果图 2.前期准备 main.js app.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M6tDCApL,// v:3.0, // 默认使用3.0// type: WebGL // ||API 默认API (使用此模式 BMapBMapGL) });i…

K210基础实验系列

CanMV K210 开发板: CanMV K210 是由 01Studio 设计研发&#xff0c;基于嘉楠科技边缘计算芯片 K210 &#xff08; RSIC V 架构&#xff0c; 64 位双核&#xff09;方案的一款开发板&#xff0c;采用硬件一体化设计&#xff08; K210 核心板、 摄像头、 LCD 集成在一个…

服务器内存不足怎么办?会有什么影响?

服务器内存&#xff0c;也被称为RAM&#xff08;Random Access Memory&#xff09;&#xff0c;是一种临时存储设备&#xff0c;用于临时存放正在运行的程序和数据。它是服务器上的超高速存储介质&#xff0c;可以快速读取和写入数据&#xff0c;提供给CPU进行实时计算和操作。…

localhost和127.0.0.1的区别是什么

今天在网上逛的时候看到一个问题&#xff0c;没想到大家讨论的很热烈&#xff0c;就是标题中这个&#xff1a; localhost和127.0.0.1的区别是什么&#xff1f; 前端同学本地调试的时候&#xff0c;应该没少和localhost打交道吧&#xff0c;只需要执行 npm run 就能在浏览器中打…

Priors in Deep Image Restoration and Enhancement: A Survey

深度图像恢复和增强中的先验&#xff1a;综述 论文链接&#xff1a;https://arxiv.org/abs/2206.02070 项目链接&#xff1a;https://github.com/VLIS2022/Awesome-Image-Prior (Preprint. Under review) Abstract 图像恢复和增强是通过消除诸如噪声、模糊和分辨率退化等退化…