大学物理实验绪论——测量与误差

news2025/1/9 23:24:26

测量

        测量的定义

        以确定被测量对象量值为目的的操作称作测量。  

        测量的过程就是把被测物理量与选作计量单位的同类物理量进行比较的过程

        测量值的组成

        物理量的测量值由数值单位两部分组成。

        测量的分类

        测量分直接测量间接测量。

        等精度测量:对某一物理量多次重复测量时,测量条件不变。不存在绝对等精度测量。

        不等精度测量:对某一物理量多次重复测量时,测量条件部分或完全改变。

        基本单位

        长度(米.m)、 质量(千克.kg) 、时间(秒.s)、电流强度(安培.A)、热力学温标(开尔文.K)、物质的量(摩尔.mol)、发光强度(坎德拉.cd)

        真值与实际值

        真值是被测量所具有的真实大小,是理想概念。

        实际值是和真值接近、满足规定准确度,用来代替真值的近真值。

        测量结果的完整表述

        \rho = 2.72 \pm 0.03(g/cm^3)(p=0.68)

        误差取1~2位,平均值最后一位与误差位对齐

误差

        误差的定义

                误差 = 测量值 - 真值

                理论上无穷次等精度测量的结果的算数平均最接近真值。

        误差的分类

                系统误差

                具有可预测性。

                按对于其的掌握程度分为已定未定:对于已定系统误差,我们已经掌握其数值符号的规律;而对于未定,我们未确切掌握,比如可能是掌握数值但未掌握符号。例如电表的系统误差(可以估计其误差限)。

                已定系统误差可以消除。

                关于误差限

                偶然误差

                        服从统计规律

                粗大误差

                        如人为读数错误等,应剔除。

测量不确定度

        测量不确定度是一个与测量结果关联的参数,用以表征合理赋予被测量值的分散性,体现结果的可信赖程度

        标准不确定度u

                用标准误差表示的测量不确定度

                按其数值评定方法分为:A类不确定度和B类不确定度

               A类不确定度u_A

                        由观测列统计分析所得,又称统计不确定度

                B类不确定度u_B

                         由不同于观测列统计分析所得,又称非统计不确定度

                合成标准不确定度

                        由几个不确定度分量影响的测量结果的标准不确定度,由分量的方差或协方差相加所得,记为u_c(y))

                相对合成标准不确定度

                u_r = \frac {u(y)}{y}

                其中 y 可以是测量值、平均值、理论值等。

                不确定度和误差的对比

                       都是精度评定参数。        

                       系统和偶然误差引起不确定度,是不确定度的基础。

                       误差以真值为中心,不确定度以估计值为中心。

                       误差难定量,不确定度可定量。        

直接测量不确定度的评定 

        对于物理量X做n次等精度测量,测量结果为x_1,x_2...x_n,计算其算数平均值\overline{x}=\frac{1}{n}\sum_{i=1}^{n} x_i

        现在考虑:粗大误差需要剔除,系统误差可以消除或者减弱,因此主要考虑随机误差的影响。

        随机误差分布

                随机误差呈正态分布,其概率方程:

               其中,有

                随机误差的大小由标准误差表示

                置信区间:误差出现在(-\sigma,\sigma)区间内的概率

        A类不确定度的评定

         u_A = \sigma_{\overline{x}} = \frac{\sigma}{\sqrt n}

即为

        对于有限次测量,应保证同样的不确定度,A类不确定度为U_A= t_pu_A其中t_p因子和置信概率与测量次数有关。

        B类不确定度测量

                B类不确定度有多项分量,如读数误差、仪器误差等,大学物理主要考虑仪器误差,仪器误差多服从均匀分布。

                u_B = u_{instrument} = k_p \frac{\Delta_instrument }{C}

                其中\Delta仪为仪器最大允许误差,k_p为置信因子(与置信概率相关),C为置信系数(与误差分布特性有关)

                \Delta仪 = 量程 × 级别 / 100

                不知级别时,通常取最小分度值的一般。

                对于单次测量,只有B类不确定度

        两类不确定度的合成

                直接测量的合成标准不确定度:

                u_c = \sqrt {(t_pu_A)^2+u_B^2}

                直接测量不确定度结果表示:

间接测量不确定度的评定

        间接测量量y=f(x_1,x_2,...,x_m),由直接测量不确定度传递。

        其中,各直接测量结果为:

        y的标准测量不确定度公式

        y的相对测量不确定度公式

        且有

          为不确定度传递系数

        结果表达:y = \overline{y}(1+U_r(y))

        推导举例

        和差函数直接求

         积商函数先取对数求相对标准不确定度

有效数字规定

         测量值一般只保留一位欠准确数。

        有效位数:左起第一位非零数字起,到第一位欠准确数止的全部数位。

        有效数字与小数点位置和单位无关,改变单位时有效位数不变

        运算中的有效数字

                准确与准确得准确

                准确与欠准确得欠准确(但进位是准确)

                运算结果只保留一位欠准确数字,去掉第二位欠准确数字时不是采用四舍五入,其方法如下:

                欲舍弃数字不等于5时,小于5舍,大于5进位;

                欲舍弃数字等于5时,欲保留数字为奇数则进,为偶数则舍。

        加减                

        乘除

        开方

                有效位数与其底的有效位数相同

                

        乘方

                

                

        结果表述中不确定度一般取1位有效数字,相对不确定度取1到2位有效数字,测量值有效数字尾数与不确定度尾数应对齐。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363971.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Java SSM框架实现实现机房预约系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现机房预约系统演示 摘要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所认识&#…

YOLOv8融合改进 更换检测头为Detect_DyHead同时添加C2f-EMSC和C2f-EMSCP模块

一、Detect_DyHead检测头和C2f-EMSC,C2f-EMSCP模块 详细介绍和代码在往期的博客里: Detect_DyHead: (YOLOv8改进检测头Detect为Detect_Dyhead-CSDN博客) C2f-EMSC和C2f-EMSCP: (YOLOv8改进…

【SpringCloud Alibaba】Nacos服务管理与Feign负载均衡

目录 一、微服务搭建 1.1 服务提供者与服务消费者 1.2 依赖关系 二、服务注册与负载均衡使用 2.1 Nacos 实现服务的注册与发现 2.2 Loadbalancer负载均衡、Feign声明式服务调用 2.3 示例综合实现 2.3.1 服务注册与发现测试 2.3.2 负载均衡测试 一、微服务搭建 1.1 服…

Gen-AI 的知识图和分析(无需图数据库)

如今,图表比以往任何时候都更加相关和有用。由于目前正在发生的人工智能革命,工程师们正在考虑围绕 Gen-AI 的机会,利用具有动态提示、数据基础和屏蔽功能的开放 Gen-AI 解决方案,这进一步促使他们思考知识图谱等有效的解决方案。…

【动态规划】【滑动窗口】C++算法:100154 执行操作后的最大分割数量

作者推荐 【动态规划】【字符串】扰乱字符串 本文涉及的基础知识点 C算法:滑动窗口总结 动态规划 LeetCode100154 执行操作后的最大分割数量 给你一个下标从 0 开始的字符串 s 和一个整数 k。 你需要执行以下分割操作,直到字符串 s 变为 空&#xf…

【SpringCloud】之配置中心(进阶使用)

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《SpringCloud开发之远程消费》。🎯&a…

C++ queue

目录 一、介绍 二、queue使用 三、模拟实现 四、优先级队列 五、priority_queue使用 OJ题:215. 数组中的第K个最大元素 快速排序 优先级队列 TOPK 六、模拟实现priority_queue 1、仿函数 2、优先级队列类 3、测试函数 一、介绍 1、队列是一种容器适配器…

阿里云服务器固定带宽实际下载速度表,不只是3M固定带宽

阿里云服务器公网带宽上传和下载速度对照表,1M带宽下载速度是128KB/秒,为什么不是1M/秒?阿里云服务器网aliyunfuwuqi.com分享阿里云服务器带宽1M、2M、3M、5M、6M、10M、20M、30M、50M、100M及200M等公网带宽下载速度对照表,附带宽…

VMware Workstation——修改虚拟机配置和设置网络

目录 一、修改配置 1、点击需要修改配置的虚拟机,然后点击编辑虚拟机配置 2、修改内存、CPU、硬盘配置 二、设置网络 1、从虚拟机配置中进入到网络适配器设置 2、选择网络连接模式 一、修改配置 1、点击需要修改配置的虚拟机,然后点击编辑虚拟机配…

Linux进程间通讯 -- 管道

Linux进程间通讯 – 管道 文章目录 Linux进程间通讯 -- 管道1. 原理2. 进程间通讯2.1 管道2.1.1 匿名管道 pipe2.2.2 有名管道 FIFO 2.2 信号2.3 共享内存2.4 本地套接字 1. 原理 Linux 进程间通讯,也称为IPC(InterProcess Communication) 在 Linux 中每个进程都具…

C++实现网站内搜索功能

文章目录 搜索结果的结构下载我们需要的数据分析html结构数据处理去标签之标题去标签之正文内容构造url把上述的数据清理操作对每一个文件都做一遍把处理好的数据都保存到一个.bin文件 构建正排索引构建倒排索引使用cpp-jieba分词计算每个文档中的每个词的权重对所有文档都进行…

格密码基础:光滑参数

目录 一. 铺垫高斯函数 二. 光滑参数图形理解 三. 光滑参数与格基本区 3.1 高斯与均匀分布的统计距离 3.2 光滑参数理解 四. 光滑参数与最短向量 五. 光滑参数与连续最小值 六. 光滑参数与对偶格的上界 七. 光滑参数与格的上界 八. 小结 一. 铺垫高斯函数 定义高斯密…

Django 9 常用通用视图分析

View 提供基于不同http方法执行不同逻辑的功能。 1. 创建 terminal输入 django-admin startapp the_13回车 2.tutorial子文件夹 settings.py注册一下 INSTALLED_APPS [django.contrib.admin,django.contrib.auth,django.contrib.contenttypes,django.contrib.sessions,dja…

九州金榜|孩子步入叛逆期,常常离家出走怎么办?

孩子在拥有了独立意识后,就开始试图挑战父母的权威。他们会主动去质疑父母,主动去证明自己的成熟和独立,还会主动试图逃离父母的控制范围。 近日就收到了家长求助孩子离家出走问题的私信,在得到家长同意,接下来我们就…

Docker-Compose部署Redis(v7.2)分片集群(含主从)

文章目录 一、前提准备1. 文件夹结构 二、配置文件1. redis.conf2. docker-compose文件 三、构建集群1. 自动分配主从关系2.1 构建3 master集群2.2 手动配置从节点 四、测试1. 集群结构2. 分片测试 环境 docker desktop for windows 4.23.0redis 7.2 目标 搭建如下图分片主从…

利用ArcGIS探究环境与生态因子对水体、土壤、大气污染物等影响的实践技术

如何利用ArcGIS实现电子地图可视化表达?如何利用ArcGIS分析空间数据?如何利用ArcGIS提升SCI论文的层次?制图是地理数据展现的直观形式,也是地理数据应用的必要基础。本次课程从ArcGIS的基本操作、ArcGIS 的空间数据分析及ArcGIS 的…

算法基础之货仓选址

货仓选址 核心思想: 贪心 绝对值不等式 : ∣ x – a ∣ ∣ x – b ∣ ≥ ∣ a – b ∣ |x – a| |x – b| ≥ |a – b| ∣x–a∣∣x–b∣≥∣a–b∣ 将n个数两两分组 1~~ n-1 (奇数会剩一个) 分别用绝对值不等式 即可推出来 货仓位置应该在中位数上(奇数) 或在中…

鸿蒙应用开发 闹钟实现

后台代理提醒简介 随着生活节奏的加快,我们有时会忘记一些重要的事情或日子,所以提醒功能必不可少。应用可能需要在指定的时刻,向用户发送一些业务提醒通知。例如购物类应用,希望在指定时间点提醒用户有优惠活动。为满足此类业务…

C# Unity将地形(Terrain)导出成obj文件

C# Unity将地形(Terrain)导出成obj文件 从其他地方搬运过来的,只能到出obj模型,不能导出贴图 using System.IO; using System.Text; using UnityEditor; using UnityEngine; using System;enum SaveFormat { Triangles, Quads } enum SaveResolution {…

Landsat8的辐射定标与大气校正

目录 打开影像辐射定标大气校正计算区域高程计算研究区高程大气校正查看处理结果 打开影像 在文件夹中找到xxx_MTL.txt文件,拖到ENVI中 此处可能会出现无法打开的问题,参考该文章(ENVI无法打开Landsat8的头文件问题和解决) 辐…